ﻻ يوجد ملخص باللغة العربية
We study the logistic bandit, in which rewards are binary with success probability $exp(beta a^top theta) / (1 + exp(beta a^top theta))$ and actions $a$ and coefficients $theta$ are within the $d$-dimensional unit ball. While prior regret bounds for algorithms that address the logistic bandit exhibit exponential dependence on the slope parameter $beta$, we establish a regret bound for Thompson sampling that is independent of $beta$. Specifically, we establish that, when the set of feasible actions is identical to the set of possible coefficient vectors, the Bayesian regret of Thompson sampling is $tilde{O}(dsqrt{T})$. We also establish a $tilde{O}(sqrt{deta T}/lambda)$ bound that applies more broadly, where $lambda$ is the worst-case optimal log-odds and $eta$ is the fragility dimension, a new statistic we define to capture the degree to which an optimal action for one model fails to satisfice for others. We demonstrate that the fragility dimension plays an essential role by showing that, for any $epsilon > 0$, no algorithm can achieve $mathrm{poly}(d, 1/lambda)cdot T^{1-epsilon}$ regret.
Stochastic Rank-One Bandits (Katarya et al, (2017a,b)) are a simple framework for regret minimization problems over rank-one matrices of arms. The initially proposed algorithms are proved to have logarithmic regret, but do not match the existing lowe
Thompson Sampling provides an efficient technique to introduce prior knowledge in the multi-armed bandit problem, along with providing remarkable empirical performance. In this paper, we revisit the Thompson Sampling algorithm under rewards drawn fro
In this paper we apply active learning algorithms for dynamic pricing in a prominent e-commerce website. Dynamic pricing involves changing the price of items on a regular basis, and uses the feedback from the pricing decisions to update prices of the
In this paper, we propose a Thompson Sampling algorithm for emph{unimodal} bandits, where the expected reward is unimodal over the partially ordered arms. To exploit the unimodal structure better, at each step, instead of exploration from the entire
We address multi-armed bandits (MAB) where the objective is to maximize the cumulative reward under a probabilistic linear constraint. For a few real-world instances of this problem, constrained extensions of the well-known Thompson Sampling (TS) heu