ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of the Position of a Single Nuclear Spin from Free Nuclear Precessions Detected by a Solid-State Quantum Sensor

69   0   0.0 ( 0 )
 نشر من قبل Eisuke Abe
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a nanoscale quantum-sensing protocol which tracks a free precession of a single nuclear spin and is capable of estimating an azimuthal angle---a parameter which standard multipulse protocols cannot determine---of the target nucleus. Our protocol combines pulsed dynamic nuclear polarization, a phase-controlled radiofrequency pulse, and a multipulse AC sensing sequence with a modified readout pulse. Using a single nitrogen-vacancy center as a solid-state quantum sensor, we experimentally demonstrate this protocol on a single 13C nuclear spin in diamond and uniquely determine the lattice site of the target nucleus. Our result paves the way for magnetic resonance imaging at the single-molecular level.

قيم البحث

اقرأ أيضاً

Nuclear magnetic resonance (NMR) is a powerful method for determining the structure of molecules and proteins. While conventional NMR requires averaging over large ensembles, recent progress with single-spin quantum sensors has created the prospect o f magnetic imaging of individual molecules. As an initial step towards this goal, isolated nuclear spins and spin pairs have been mapped. However, large clusters of interacting spins - such as found in molecules - result in highly complex spectra. Imaging these complex systems is an outstanding challenge due to the required high spectral resolution and efficient spatial reconstruction with sub-angstrom precision. Here we develop such atomic-scale imaging using a single nitrogen-vacancy (NV) centre as a quantum sensor, and demonstrate it on a model system of $27$ coupled $^{13}$C nuclear spins in a diamond. We present a new multidimensional spectroscopy method that isolates individual nuclear-nuclear spin interactions with high spectral resolution ($< 80,$mHz) and high accuracy ($2$ mHz). We show that these interactions encode the composition and inter-connectivity of the cluster, and develop methods to extract the 3D structure of the cluster with sub-angstrom resolution. Our results demonstrate a key capability towards magnetic imaging of individual molecules and other complex spin systems.
Robust, high-fidelity readout is central to quantum device performance. Overcoming poor readout is an increasingly urgent challenge for devices based on solid-state spin defects, particularly given their rapid adoption in quantum sensing, quantum inf ormation, and tests of fundamental physics. Spin defects in solids combine the repeatability and precision available to atomic and cryogenic systems with substantial advantages in compactness and range of operating conditions. However, in spite of experimental progress in specific systems, solid-state spin sensors still lack a universal, high-fidelity readout technique. Here we demonstrate high-fidelity, room-temperature readout of an ensemble of nitrogen-vacancy (NV) centers via strong coupling to a dielectric microwave cavity, building on similar techniques commonly applied in cryogenic circuit cavity quantum electrodynamics. This strong collective interaction allows the spin ensembles microwave transition to be probed directly, thereby overcoming the optical photon shot noise limitations of conventional fluorescence readout. Applying this technique to magnetometry, we show magnetic sensitivity approaching the Johnson-Nyquist noise limit of the system. This readout technique is viable for the many paramagnetic spin systems that exhibit resonances in the microwave domain. Our results pave a clear path to achieve unity readout fidelity of solid-state spin sensors through increased ensemble size, reduced spin-resonance linewidth, or improved cavity quality factor.
The efficient single photon emission capabilities of quantum dot molecules position them as promising platforms for quantum information processing. Furthermore, quantum dot molecules feature a decoherence-free subspace that enables spin qubits with l ong coherence time. To efficiently read out the spin state within this subspace requires optically cycling isolated transitions that originate from a triplet manifold within the quantum dot molecule. We propose and theoretically study a two-stage spin readout protocol within this decoherence-free subspace that allows single-shot readout performance. The process incorporates a microwave $pi$-pulse and optically cycling the isolated transitions, which induces fluorescence that allows us to identify the initial spin state. This protocol offers enhanced readout fidelity compared to previous schemes that rely on the excitation of transitions that strongly decay to multiple ground states or require long initialization via slow, optically forbidden transitions. By simulating the performance of the protocol, we show that an optimal spin readout fidelity of over 97% and single-shot readout performance are achievable for a photon collection efficiency of just 0.12%. This high readout performance for such realistic photon collection conditions within the decoherence-free subspace expands the potential of quantum dot molecules as building blocks for quantum networks.
Solid-state nuclear spins surrounding individual, optically addressable qubits provide a crucial resource for quantum networks, computation and simulation. While hosts with sparse nuclear spin baths are typically chosen to mitigate qubit decoherence, developing coherent quantum systems in nuclear spin-rich hosts enables exploration of a much broader range of materials for quantum information applications. The collective modes of these dense nuclear spin ensembles provide a natural basis for quantum storage, however, utilizing them as a resource for single spin qubits has thus far remained elusive. Here, by using a highly coherent, optically addressed 171Yb3+ qubit doped into a nuclear spin-rich yttrium orthovanadate crystal, we develop a robust quantum control protocol to manipulate the multi-level nuclear spin states of neighbouring 51V5+ lattice ions. Via a dynamically-engineered spin exchange interaction, we polarise this nuclear spin ensemble, generate collective spin excitations, and subsequently use them to implement a long-lived quantum memory. We additionally demonstrate preparation and measurement of maximally entangled 171Yb--51V Bell states. Unlike conventional, disordered nuclear spin based quantum memories, our platform is deterministic and reproducible, ensuring identical quantum registers for all 171Yb qubits. Our approach provides a framework for utilising the complex structure of dense nuclear spin baths, paving the way for building large-scale quantum networks using single rare-earth ion qubits.
Quantum sensors based on spin defect ensembles have seen rapid development in recent years, with a wide array of target applications. Historically, these sensors have used optical methods to prepare or read out quantum states. However, these methods are limited to optically-polarizable spin defects, and the spin ensemble size is typically limited by the available optical power or acceptable optical heat load. We demonstrate a solid-state sensor employing a non-optical state preparation technique, which harnesses thermal population imbalances induced by the defects zero-field splitting. Readout is performed using the recently-demonstrated microwave cavity readout technique, resulting in a sensor architecture that is entirely non-optical and broadly applicable to all solid-state paramagnetic defects with a zero-field splitting. The implementation in this work uses Cr$^{3+}$ defects in a sapphire (Al$_2$O$_3$) crystal and a simple microwave architecture where the host crystal also serves as the high quality-factor resonator. This approach yields a near-unity filling factor and high single-spin-photon coupling, producing a magnetometer with a broadband sensitivity of 9.7 pT/$sqrt{text{Hz}}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا