ترغب بنشر مسار تعليمي؟ اضغط هنا

Cavity quantum electrodynamic readout of a solid-state spin sensor

174   0   0.0 ( 0 )
 نشر من قبل Erik Eisenach
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Robust, high-fidelity readout is central to quantum device performance. Overcoming poor readout is an increasingly urgent challenge for devices based on solid-state spin defects, particularly given their rapid adoption in quantum sensing, quantum information, and tests of fundamental physics. Spin defects in solids combine the repeatability and precision available to atomic and cryogenic systems with substantial advantages in compactness and range of operating conditions. However, in spite of experimental progress in specific systems, solid-state spin sensors still lack a universal, high-fidelity readout technique. Here we demonstrate high-fidelity, room-temperature readout of an ensemble of nitrogen-vacancy (NV) centers via strong coupling to a dielectric microwave cavity, building on similar techniques commonly applied in cryogenic circuit cavity quantum electrodynamics. This strong collective interaction allows the spin ensembles microwave transition to be probed directly, thereby overcoming the optical photon shot noise limitations of conventional fluorescence readout. Applying this technique to magnetometry, we show magnetic sensitivity approaching the Johnson-Nyquist noise limit of the system. This readout technique is viable for the many paramagnetic spin systems that exhibit resonances in the microwave domain. Our results pave a clear path to achieve unity readout fidelity of solid-state spin sensors through increased ensemble size, reduced spin-resonance linewidth, or improved cavity quality factor.

قيم البحث

اقرأ أيضاً

Quantum sensors based on spin defect ensembles have seen rapid development in recent years, with a wide array of target applications. Historically, these sensors have used optical methods to prepare or read out quantum states. However, these methods are limited to optically-polarizable spin defects, and the spin ensemble size is typically limited by the available optical power or acceptable optical heat load. We demonstrate a solid-state sensor employing a non-optical state preparation technique, which harnesses thermal population imbalances induced by the defects zero-field splitting. Readout is performed using the recently-demonstrated microwave cavity readout technique, resulting in a sensor architecture that is entirely non-optical and broadly applicable to all solid-state paramagnetic defects with a zero-field splitting. The implementation in this work uses Cr$^{3+}$ defects in a sapphire (Al$_2$O$_3$) crystal and a simple microwave architecture where the host crystal also serves as the high quality-factor resonator. This approach yields a near-unity filling factor and high single-spin-photon coupling, producing a magnetometer with a broadband sensitivity of 9.7 pT/$sqrt{text{Hz}}$.
We demonstrate optical readout of a single electron spin using cavity quantum electrodynamics. The spin is trapped in a single quantum dot that is strongly coupled to a nanophotonic cavity. Selectively coupling one of the optical transitions of the q uantum dot to the cavity mode results in a spin-dependent cavity reflectivity that enables projective spin measurements by monitoring the reflected intensity of an incident optical field. Using this approach, we demonstrate spin readout fidelity of 0.61 for a quantum dot that has a poor branching ratio of 0.43. Achieving this fidelity using resonance fluorescence from a bare dot would require 43 times improvement in photon collection efficiency.
The efficient single photon emission capabilities of quantum dot molecules position them as promising platforms for quantum information processing. Furthermore, quantum dot molecules feature a decoherence-free subspace that enables spin qubits with l ong coherence time. To efficiently read out the spin state within this subspace requires optically cycling isolated transitions that originate from a triplet manifold within the quantum dot molecule. We propose and theoretically study a two-stage spin readout protocol within this decoherence-free subspace that allows single-shot readout performance. The process incorporates a microwave $pi$-pulse and optically cycling the isolated transitions, which induces fluorescence that allows us to identify the initial spin state. This protocol offers enhanced readout fidelity compared to previous schemes that rely on the excitation of transitions that strongly decay to multiple ground states or require long initialization via slow, optically forbidden transitions. By simulating the performance of the protocol, we show that an optimal spin readout fidelity of over 97% and single-shot readout performance are achievable for a photon collection efficiency of just 0.12%. This high readout performance for such realistic photon collection conditions within the decoherence-free subspace expands the potential of quantum dot molecules as building blocks for quantum networks.
Single-photon switches and transistors generate strong photon-photon interactions that are essential for quantum circuits and networks. However, to deterministically control an optical signal with a single photon requires strong interactions with a q uantum memory, which have been lacking in a solid-state platform. We realize a single-photon switch and transistor enabled by a solid-state quantum memory. Our device consists of a semiconductor spin qubit strongly coupled to a nanophotonic cavity. The spin qubit enables a single gate photon to switch a signal field containing up to an average of 27.7 photons, with a switching time of 63 ps. Our results show that semiconductor nanophotonic devices can produce strong and controlled photon-photon interactions that could enable high-bandwidth photonic quantum information processing.
68 - Kento Sasaki , Kohei M. Itoh , 2018
We report on a nanoscale quantum-sensing protocol which tracks a free precession of a single nuclear spin and is capable of estimating an azimuthal angle---a parameter which standard multipulse protocols cannot determine---of the target nucleus. Our protocol combines pulsed dynamic nuclear polarization, a phase-controlled radiofrequency pulse, and a multipulse AC sensing sequence with a modified readout pulse. Using a single nitrogen-vacancy center as a solid-state quantum sensor, we experimentally demonstrate this protocol on a single 13C nuclear spin in diamond and uniquely determine the lattice site of the target nucleus. Our result paves the way for magnetic resonance imaging at the single-molecular level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا