ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear spin-wave quantum register for a solid state qubit

86   0   0.0 ( 0 )
 نشر من قبل Andrei Ruskuc
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solid-state nuclear spins surrounding individual, optically addressable qubits provide a crucial resource for quantum networks, computation and simulation. While hosts with sparse nuclear spin baths are typically chosen to mitigate qubit decoherence, developing coherent quantum systems in nuclear spin-rich hosts enables exploration of a much broader range of materials for quantum information applications. The collective modes of these dense nuclear spin ensembles provide a natural basis for quantum storage, however, utilizing them as a resource for single spin qubits has thus far remained elusive. Here, by using a highly coherent, optically addressed 171Yb3+ qubit doped into a nuclear spin-rich yttrium orthovanadate crystal, we develop a robust quantum control protocol to manipulate the multi-level nuclear spin states of neighbouring 51V5+ lattice ions. Via a dynamically-engineered spin exchange interaction, we polarise this nuclear spin ensemble, generate collective spin excitations, and subsequently use them to implement a long-lived quantum memory. We additionally demonstrate preparation and measurement of maximally entangled 171Yb--51V Bell states. Unlike conventional, disordered nuclear spin based quantum memories, our platform is deterministic and reproducible, ensuring identical quantum registers for all 171Yb qubits. Our approach provides a framework for utilising the complex structure of dense nuclear spin baths, paving the way for building large-scale quantum networks using single rare-earth ion qubits.



قيم البحث

اقرأ أيضاً

Spins associated to single defects in solids provide promising qubits for quantum information processing and quantum networks. Recent experiments have demonstrated long coherence times, high-fidelity operations and long-range entanglement. However, c ontrol has so far been limited to a few qubits, with entangled states of three spins demonstrated. Realizing larger multi-qubit registers is challenging due to the need for quantum gates that avoid crosstalk and protect the coherence of the complete register. In this paper, we present novel decoherence-protected gates that combine dynamical decoupling of an electron spin with selective phase-controlled driving of nuclear spins. We use these gates to realize a 10-qubit quantum register consisting of the electron spin of a nitrogen-vacancy center and 9 nuclear spins in diamond. We show that the register is fully connected by generating entanglement between all 45 possible qubit pairs, and realize genuine multipartite entangled states with up to 7 qubits. Finally, we investigate the register as a multi-qubit memory. We show coherence times up to 63(2) seconds - the longest reported for a single solid-state qubit - and demonstrate that two-qubit entangled states can be stored for over 10 seconds. Our results enable the control of large quantum registers with long coherence times and therefore open the door to advanced quantum algorithms and quantum networks with solid-state spin qubits.
280 - G. Waldherr , Y. Wang , S. Zaiser 2013
Hybrid quantum systems seek to combine the strength of its constituents to master the fundamental conflicting requirements of quantum technology: fast and accurate systems control together with perfect shielding from the environment, including the me asurements apparatus, to achieve long quantum coherence. Excellent examples for hybrid quantum systems are heterogeneous spin systems where electron spins are used for readout and control while nuclear spins are used as long-lived quantum bits. Here we show that joint initialization, projective readout and fast local and non-local gate operations are no longer conflicting requirements in those systems, even under ambient conditions. We demonstrate high-fidelity initialization of a whole spin register (99 %) and single-shot readout of multiple individual nuclear spins by using the ancillary electron spin of a nitrogen-vacancy defect in diamond. Implementation of a novel non-local gate generic to our hybrid electron-nuclear quantum register allows to prepare entangled states of three nuclear spins, with fidelities exceeding 85 %. An important tool for scalable quantum computation is quantum error correction. Combining, for the first time, optimal-control based error avoidance with error correction, we realize a three-qubit phase-flip error correction algorithm. Utilizing optimal control, all of the above algorithms achieve fidelities approaching fault tolerant quantum operation, thus paving the way to large scale integrations. Our techniques can be used to improve scaling of quantum networks relying on diamond spins, phosphorous in silicon or other spin systems like quantum dots, silicon carbide or rare earth ions in solids.
Defects with associated electron and nuclear spins in solid-state materials have a long history relevant to quantum information science going back to the first spin echo experiments with silicon dopants in the 1950s. Since the turn of the century, th e field has rapidly spread to a vast array of defects and host crystals applicable to quantum communication, sensing, and computing. From simple spin resonance to long-distance remote entanglement, the complexity of working with spin defects is fast advancing, and requires an in-depth understanding of their spin, optical, charge, and material properties in this modern context. This is especially critical for discovering new relevant systems dedicated to specific quantum applications. In this review, we therefore expand upon all the key components with an emphasis on the properties of defects and the host material, on engineering opportunities and other pathways for improvement. Finally, this review aims to be as defect and material agnostic as possible, with some emphasis on optical emitters, providing a broad guideline for the field of solid-state spin defects for quantum information.
This study deals with the further development of nuclear spin model of scalable quantum register, which presents the one-dimensional chain of the magnetic atoms with nuclear spins 1/2, substituting the basic atoms in the plate of nuclear spin-free ea sy-axis 3D antiferromagnet. The decoherence rates of one qubit state and entanglement state of two removed qubits and longitudinal relaxation rates are caused by the interaction of nuclear spins-qubits with virtual spin waves in antiferromagnet ground state were calculated. It was considered also one qubit adiabatic decoherence, is caused by the interaction of nuclear spin of quantum register with nuclear spins of randomly distributed isotopes, substituting the basic nuclear spin-free isotopes of antiferromagnet. We have considered finally encoded DFS (Decoherence-Free Subspaces) logical qubits are constructed on clusters of the four-physical qubits, given by the two states with zero total angular momentum.
Solid-state impurity spins with optical control are currently investigated for quantum networks and repeaters. Among these, rare-earth-ion doped crystals are promising as quantum memories for light, with potentially long storage time, high multimode capacity, and high bandwidth. However, with spins there is often a tradeoff between bandwidth, which favors electronic spin, and memory time, which favors nuclear spins. Here, we present optical storage experiments using highly hybridized electron-nuclear hyperfine states in $^{171}$Yb$^{3+}$:Y$_2$SiO$_5$, where the hybridization can potentially offer both long storage time and high bandwidth. We reach a storage time of 1.2 ms and an optical storage bandwidth of 10 MHz that is currently only limited by the Rabi frequency of the optical control pulses. The memory efficiency in this proof-of-principle demonstration was about 3%. The experiment constitutes the first optical storage using spin states in any rare-earth ion with electronic spin. These results pave the way for rare-earth based quantum memories with high bandwidth, long storage time and high multimode capacity, a key resource for quantum repeaters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا