ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-shot readout of a solid-state spin in a decoherence-free subspace

118   0   0.0 ( 0 )
 نشر من قبل Demitry Farfurnik
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The efficient single photon emission capabilities of quantum dot molecules position them as promising platforms for quantum information processing. Furthermore, quantum dot molecules feature a decoherence-free subspace that enables spin qubits with long coherence time. To efficiently read out the spin state within this subspace requires optically cycling isolated transitions that originate from a triplet manifold within the quantum dot molecule. We propose and theoretically study a two-stage spin readout protocol within this decoherence-free subspace that allows single-shot readout performance. The process incorporates a microwave $pi$-pulse and optically cycling the isolated transitions, which induces fluorescence that allows us to identify the initial spin state. This protocol offers enhanced readout fidelity compared to previous schemes that rely on the excitation of transitions that strongly decay to multiple ground states or require long initialization via slow, optically forbidden transitions. By simulating the performance of the protocol, we show that an optimal spin readout fidelity of over 97% and single-shot readout performance are achievable for a photon collection efficiency of just 0.12%. This high readout performance for such realistic photon collection conditions within the decoherence-free subspace expands the potential of quantum dot molecules as building blocks for quantum networks.

قيم البحث

اقرأ أيضاً

We demonstrate optical readout of a single electron spin using cavity quantum electrodynamics. The spin is trapped in a single quantum dot that is strongly coupled to a nanophotonic cavity. Selectively coupling one of the optical transitions of the q uantum dot to the cavity mode results in a spin-dependent cavity reflectivity that enables projective spin measurements by monitoring the reflected intensity of an incident optical field. Using this approach, we demonstrate spin readout fidelity of 0.61 for a quantum dot that has a poor branching ratio of 0.43. Achieving this fidelity using resonance fluorescence from a bare dot would require 43 times improvement in photon collection efficiency.
Robust, high-fidelity readout is central to quantum device performance. Overcoming poor readout is an increasingly urgent challenge for devices based on solid-state spin defects, particularly given their rapid adoption in quantum sensing, quantum inf ormation, and tests of fundamental physics. Spin defects in solids combine the repeatability and precision available to atomic and cryogenic systems with substantial advantages in compactness and range of operating conditions. However, in spite of experimental progress in specific systems, solid-state spin sensors still lack a universal, high-fidelity readout technique. Here we demonstrate high-fidelity, room-temperature readout of an ensemble of nitrogen-vacancy (NV) centers via strong coupling to a dielectric microwave cavity, building on similar techniques commonly applied in cryogenic circuit cavity quantum electrodynamics. This strong collective interaction allows the spin ensembles microwave transition to be probed directly, thereby overcoming the optical photon shot noise limitations of conventional fluorescence readout. Applying this technique to magnetometry, we show magnetic sensitivity approaching the Johnson-Nyquist noise limit of the system. This readout technique is viable for the many paramagnetic spin systems that exhibit resonances in the microwave domain. Our results pave a clear path to achieve unity readout fidelity of solid-state spin sensors through increased ensemble size, reduced spin-resonance linewidth, or improved cavity quality factor.
Strong interactions between single spins and photons are essential for quantum networks and distributed quantum computation. They provide the necessary interface for entanglement distribution, non-destructive quantum measurements, and strong photon-p hoton interactions. Achieving spin-photon interactions in a solid-state device could enable compact chip-integrated quantum circuits operating at gigahertz bandwidths. Many theoretical works have suggested using spins embedded in nanophotonic structures to attain this high-speed interface. These proposals exploit strong light-matter interactions to implement a quantum switch, where the spin flips the state of the photon and a photon flips the spin-state. However, such a switch has not yet been realized using a solid-state spin system. Here, we report an experimental realization of a spin-photon quantum switch using a single solid-state spin embedded in a nanophotonic cavity. We show that the spin-state strongly modulates the cavity reflection coefficient, which conditionally flips the polarization state of a reflected photon on picosecond timescales. We also demonstrate the complementary effect where a single photon reflected from the cavity coherently rotates the spin. These strong spin-photon interactions open up a promising direction for solid-state implementations of high-speed quantum networks and on-chip quantum information processors using nanophotonic devices.
68 - Kento Sasaki , Kohei M. Itoh , 2018
We report on a nanoscale quantum-sensing protocol which tracks a free precession of a single nuclear spin and is capable of estimating an azimuthal angle---a parameter which standard multipulse protocols cannot determine---of the target nucleus. Our protocol combines pulsed dynamic nuclear polarization, a phase-controlled radiofrequency pulse, and a multipulse AC sensing sequence with a modified readout pulse. Using a single nitrogen-vacancy center as a solid-state quantum sensor, we experimentally demonstrate this protocol on a single 13C nuclear spin in diamond and uniquely determine the lattice site of the target nucleus. Our result paves the way for magnetic resonance imaging at the single-molecular level.
We use the electronic spin of a single Nitrogen-Vacancy (NV) defect in diamond to observe the real-time evolution of neighboring single nuclear spins under ambient conditions. Using a diamond sample with a natural abundance of $^{13}$C isotopes, we f irst demonstrate high fidelity initialization and single-shot readout of an individual $^{13}$C nuclear spin. By including the intrinsic $^{14}$N nuclear spin of the NV defect in the quantum register, we then report the simultaneous observation of quantum jumps linked to both nuclear spin species, providing an efficient initialization of the two qubits. These results open up new avenues for diamond-based quantum information processing including active feedback in quantum error correction protocols and tests of quantum correlations with solid-state single spins at room temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا