ﻻ يوجد ملخص باللغة العربية
We present a model for conductivity and energy diffusion in a linear chain described by a quadratic Hamiltonian with Gaussian noise. We show that when the correlation matrix is diagonal, the noise-averaged Liouville-von Neumann equation governing the time-evolution of the system reduces to the Lindblad equation with Hermitian Lindblad operators. We show that the noise-averaged density matrix for the system expectation values of the energy density and the number density satisfy discre
We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical com
Off-diagonal profiles of local densities (e.g. order parameter or energy density) are calculated at the bulk critical point, by conformal methods, for different types of boundary conditions (free, fixed and mixed). Such profiles, which are defined by
We study a one dimensional quantum XY spin chain driven by a local noisy spin impurity with finite correlation time, along the transverse field direction. We recover the celebrated Zeno crossover and we show that entanglement can be used as a proxy f
Covariant perturbation expansion is an important method in quantum field theory. In this paper an expansion up to arbitrary order for off-diagonal heat kernels in flat space based on the covariant perturbation expansion is given. In literature, only
It has been claimed that quasistatic granular materials, as well as nanoscale materials, exhibit departures from elasticity even at small loadings. It is demonstrated, using 2D and 3D models with interparticle harmonic interactions, that such departu