ترغب بنشر مسار تعليمي؟ اضغط هنا

Summary and Conclusions of the JRA Beam Telescope 2025-Forum at the 6th Beam Telescopes and Test Beams Workshop

190   0   0.0 ( 0 )
 نشر من قبل Jan Dreyling-Eschweiler
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On January 17th 2018, a forum on a possible Joint Research Activity on a future common Beam Telescope was held during the 6th Beam Telescopes and Test Beams Workshop (BTTB) in Zurich, Switzerland. The BTTB workshop aims at bringing together the community involved in beam tests. It therefore offers a suitable platform to induce community-wide discussions. The forum and its discussions were well received and the participants concluded that appropriate actions should be undertaken promptly. Specific hardware and software proposals were discussed, with an emphasis on improving current common EUDET-type telescopes based on Mimosa26 sensors towards higher trigger rate capabilities in convolution with considerably improved time resolution. EUDAQ as a common top level DAQ and its modular structure is ready for future hardware. EUTelescope fulfils many requirements of a common reconstruction framework, but has also various drawbacks. Thus, requirements for a new common reconstruction framework were collected. A new common beam telescope evolves with the sensor decision and the whole package including a reconstruction framework depends on that decision.

قيم البحث

اقرأ أيضاً

On October 5/6, 2017, DESY hosted the first DESY Test Beam User Workshop [1] which took place in Hamburg. Fifty participants from different user communities, ranging from LHC (ALICE, ATLAS, CMS, LHCb) to FAIR (CBM, PANDA), DUNE, Belle-II, future line ar colliders (ILC, CLIC) and generic detector R&D presented their experiences with the DESY II Test Beam Facility, their concrete plans for the upcoming years and a first estimate of their needs for beam time in the long-term future beyond 2025. A special focus was also on additional improvements to the facility beyond its current capabilities.
Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes us ing MIMOSA26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its standard deviation at the two centre pixel planes using all six planes for tracking in a 6,GeV electron/positron-beam is measured to be $(2.88,pm,0.08),upmumeter$.Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean intrinsic resolution over the six sensors used is found to be $(3.24,pm,0.09),upmumeter$.With a 5,GeV electron/positron beam, the track resolution halfway between the two inner pixel planes using an equidistant plane spacing of 20,mm is estimated to $(1.83,pm,0.03),upmumeter$ assuming the measured intrinsic resolution. Towards lower beam energies the track resolution deteriorates due to increasing multiple scattering. Threshold studies show an optimal working point of the MIMOSA26 sensors at a sensor threshold of between five and six times their RMS noise. Measurements at different plane spacings are used to calibrate the amount of multiple scattering in the material traversed and allow for corrections to the predicted angular scattering for electron beams.
83 - Satoru Uozumi 2009
The scintillator-strip electromagnetic calorimeter (ScECAL) is one of the calorimeter technologies which can achieve fine granularity required for the particle flow algorithm. Second prototype of the ScECAL has been built and tested with analog hadro n calorimeter (AHCAL) and tail catcher (TCMT) in September 2008 at Fermilab meson test beam facility. Data are taken with 1 to 32 GeV of electron, pion and muon beams to evaluate all the necessary performances of the ScECAL, AHCAL and TCMT system. This manuscript describes overview of the beam test and very preliminary results focusing on the ScECAL part.
105 - Kiyotomo Kawagoe 2010
ILC detectors are required to have unprecedented precision. Achieving this requires significant investment for test beam activities to complete the detector R&D needed, to test prototypes and (later) to qualify final detector system designs, includin g integrated system test. This document summarizes the discussion at this workshop on the test beam facilities and detector R&D programs to be performed there.
119 - Satoru Uozumi 2010
In Japan, China and Russia, there are several test beam lines available or will become available in near future. Those are open for users who need electron, muon and charged pion beams with energies of 1-50 GeV for any tests of small-size detectors. In this manuscript I present a current status of those test beam facilities in the Asian region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا