ترغب بنشر مسار تعليمي؟ اضغط هنا

Summary and Conclusions of the First DESY Test Beam User Workshop

66   0   0.0 ( 0 )
 نشر من قبل Marcel Stanitzki
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On October 5/6, 2017, DESY hosted the first DESY Test Beam User Workshop [1] which took place in Hamburg. Fifty participants from different user communities, ranging from LHC (ALICE, ATLAS, CMS, LHCb) to FAIR (CBM, PANDA), DUNE, Belle-II, future linear colliders (ILC, CLIC) and generic detector R&D presented their experiences with the DESY II Test Beam Facility, their concrete plans for the upcoming years and a first estimate of their needs for beam time in the long-term future beyond 2025. A special focus was also on additional improvements to the facility beyond its current capabilities.



قيم البحث

اقرأ أيضاً

On January 17th 2018, a forum on a possible Joint Research Activity on a future common Beam Telescope was held during the 6th Beam Telescopes and Test Beams Workshop (BTTB) in Zurich, Switzerland. The BTTB workshop aims at bringing together the commu nity involved in beam tests. It therefore offers a suitable platform to induce community-wide discussions. The forum and its discussions were well received and the participants concluded that appropriate actions should be undertaken promptly. Specific hardware and software proposals were discussed, with an emphasis on improving current common EUDET-type telescopes based on Mimosa26 sensors towards higher trigger rate capabilities in convolution with considerably improved time resolution. EUDAQ as a common top level DAQ and its modular structure is ready for future hardware. EUTelescope fulfils many requirements of a common reconstruction framework, but has also various drawbacks. Thus, requirements for a new common reconstruction framework were collected. A new common beam telescope evolves with the sensor decision and the whole package including a reconstruction framework depends on that decision.
163 - Satoru Uozumi 2010
In Japan, China and Russia, there are several test beam lines available or will become available in near future. Those are open for users who need electron, muon and charged pion beams with energies of 1-50 GeV for any tests of small-size detectors. In this manuscript I present a current status of those test beam facilities in the Asian region.
The second workshop to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States was held at Fermilab on July 8-9, 2014. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detect ors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in six topical plenary sessions: $i)$ Argon Purity and Cryogenics, $ii)$ TPC and High Voltage, $iii)$ Electronics, Data Acquisition and Triggering, $iv)$ Scintillation Light Detection, $v)$ Calibration and Test Beams, and $vi)$ Software. This document summarizes the current efforts in each of these areas. It primarily focuses on the work in the US, but also highlights work done elsewhere in the world.
Extremely radiation hard sensors are needed in particle physics experiments to instrument the region near the beam pipe. Examples are beam halo and beam loss monitors at the Large Hadron Collider, FLASH or XFEL. Currently artificial diamond sensors a re widely used. In this paper single crystal sapphire sensors are considered as a promising alternative. Industrially grown sapphire wafers are available in large sizes, are of low cost and, like diamond sensors, can be operated without cooling. Here we present results of an irradiation study done with sapphire sensors in a high intensity low energy electron beam. Then, a multichannel direction-sensitive sapphire detector stack is described. It comprises 8 sapphire plates of 1 cm^2 size and 525 micro m thickness, metallized on both sides, and apposed to form a stack. Each second metal layer is supplied with a bias voltage, and the layers in between are connected to charge-sensitive preamplifiers. The performance of the detector was studied in a 5 GeV electron beam. The charge collection efficiency measured as a function of the bias voltage rises with the voltage, reaching about 10 % at 950 V. The signal size obtained from electrons crossing the stack at this voltage is about 22000 e, where e is the unit charge. The signal size is measured as a function of the hit position, showing variations of up to 20 % in the direction perpendicular to the beam and to the electric field. The measurement of the signal size as a function of the coordinate parallel to the electric field confirms the prediction that mainly electrons contribute to the signal. Also evidence for the presence of a polarisation field was observed.
104 - Yongjie sun , Cheng Li , Zebo Tang 2010
A new prototype of large area Multi-gap Resistive Plate Chamber (MRPC) with long readout strips was built. This Long-strip Multi-gap Resistive Plate Chamber (LMRPC) is double stacked and has ten 250 $mu$m-thick gas gaps. Signals are read out from two ends of strip with an active area of 50 cm$times$2.5 cm in each. The detector was tested at FOPI in GSI, using the secondary particles of proton beams ($E = 3.5 GeV$) colliding with a Pb target. The results show that the LMRPC prototype has a time resolution of about 60$sim$70 ps; the detecting efficiency is over 98% and the ratio of cross-talk is lower than 2%. The detector also has a good spatial resolution of 0.36 cm along the strip direction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا