ترغب بنشر مسار تعليمي؟ اضغط هنا

Test Beams Summary

180   0   0.0 ( 0 )
 نشر من قبل Kiyotomo Kawagoe
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kiyotomo Kawagoe




اسأل ChatGPT حول البحث

ILC detectors are required to have unprecedented precision. Achieving this requires significant investment for test beam activities to complete the detector R&D needed, to test prototypes and (later) to qualify final detector system designs, including integrated system test. This document summarizes the discussion at this workshop on the test beam facilities and detector R&D programs to be performed there.



قيم البحث

اقرأ أيضاً

On January 17th 2018, a forum on a possible Joint Research Activity on a future common Beam Telescope was held during the 6th Beam Telescopes and Test Beams Workshop (BTTB) in Zurich, Switzerland. The BTTB workshop aims at bringing together the commu nity involved in beam tests. It therefore offers a suitable platform to induce community-wide discussions. The forum and its discussions were well received and the participants concluded that appropriate actions should be undertaken promptly. Specific hardware and software proposals were discussed, with an emphasis on improving current common EUDET-type telescopes based on Mimosa26 sensors towards higher trigger rate capabilities in convolution with considerably improved time resolution. EUDAQ as a common top level DAQ and its modular structure is ready for future hardware. EUTelescope fulfils many requirements of a common reconstruction framework, but has also various drawbacks. Thus, requirements for a new common reconstruction framework were collected. A new common beam telescope evolves with the sensor decision and the whole package including a reconstruction framework depends on that decision.
On October 5/6, 2017, DESY hosted the first DESY Test Beam User Workshop [1] which took place in Hamburg. Fifty participants from different user communities, ranging from LHC (ALICE, ATLAS, CMS, LHCb) to FAIR (CBM, PANDA), DUNE, Belle-II, future line ar colliders (ILC, CLIC) and generic detector R&D presented their experiences with the DESY II Test Beam Facility, their concrete plans for the upcoming years and a first estimate of their needs for beam time in the long-term future beyond 2025. A special focus was also on additional improvements to the facility beyond its current capabilities.
69 - Y. Liu , M. S. Amjad , P. Baesso 2019
The data acquisition software framework, EUDAQ, was originally developed to read out data from the EUDET-type pixel telescopes. This was successfully used in many test beam campaigns in which an external position and time reference were required. The software has recently undergone a significant upgrade, EUDAQ2, which is a generic, modern and modular system for use by many different detector types, ranging from tracking detectors to calorimeters. EUDAQ2 is suited as an overarching software that links individual detector readout systems and simplifies the integration of multiple detectors. The framework itself supports several triggering and event building modes. This flexibility makes test beams with multiple detectors significantly easier and more efficient, as EUDAQ2 can adapt to the characteristics of each detector prototype during testing. The system has been thoroughly tested during multiple test beams involving different detector prototypes. EUDAQ2 has now been released and is freely available under an open-source license.
Discussions in the taskforce meetings in the period of Jan.-Mar. 2009 on the technical possibility of the ultracold neutron (UCN) source at the Japan Proton Accelerator Research Complex (J-PARC) is summarized.
In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (bbonu) in Xe-136 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout plane performing the energy measurement is composed of Hamamatsu R11410-10 photomultipliers, specially designed for operation in low-background, xenon-based detectors. Each individual PMT will be isolated from the gas by an individual, pressure resistant enclosure and will be coupled to the sensitive volume through a sapphire window. The tracking plane consists in an array of Hamamatsu S10362-11-050P MPPCs used as tracking pixels. They will be arranged in square boards holding 64 sensors (8 times8) with a 1-cm pitch. The inner walls of the TPC, the sapphire windows and the boards holding the MPPCs will be coated with tetraphenyl butadiene (TPB), a wavelength shifter, to improve the light collection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا