ترغب بنشر مسار تعليمي؟ اضغط هنا

CALICE ScECAL Beam Test at Fermilab

128   0   0.0 ( 0 )
 نشر من قبل Satoru Uozumi
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Satoru Uozumi




اسأل ChatGPT حول البحث

The scintillator-strip electromagnetic calorimeter (ScECAL) is one of the calorimeter technologies which can achieve fine granularity required for the particle flow algorithm. Second prototype of the ScECAL has been built and tested with analog hadron calorimeter (AHCAL) and tail catcher (TCMT) in September 2008 at Fermilab meson test beam facility. Data are taken with 1 to 32 GeV of electron, pion and muon beams to evaluate all the necessary performances of the ScECAL, AHCAL and TCMT system. This manuscript describes overview of the beam test and very preliminary results focusing on the ScECAL part.



قيم البحث

اقرأ أيضاً

336 - D.Indurthy 2005
The Neutrinos at the Main Injector (NuMI) beamline will deliver an intense muon neutrino beam by focusing a beam of mesons into a long evacuated decay volume. We have built 4 arrays of ionization chambers to monitor the neutrino beam direction and qu ality. The arrays are located at 4 stations downstream of the decay volume, and measure the remnant hadron beam and tertiary muons produced along with neutrinos in meson decays.
The ArgoNeuT liquid argon time projection chamber has collected thousands of neutrino and antineutrino events during an extended run period in the NuMI beam-line at Fermilab. This paper focuses on the main aspects of the detector layout and related t echnical features, including the cryogenic equipment, time projection chamber, read-out electronics, and off-line data treatment. The detector commissioning phase, physics run, and first neutrino event displays are also reported. The characterization of the main working parameters of the detector during data-taking, the ionization electron drift velocity and lifetime in liquid argon, as obtained from through-going muon data complete the present report.
161 - Satoru Uozumi 2010
In Japan, China and Russia, there are several test beam lines available or will become available in near future. Those are open for users who need electron, muon and charged pion beams with energies of 1-50 GeV for any tests of small-size detectors. In this manuscript I present a current status of those test beam facilities in the Asian region.
126 - Frederick Gray 2015
A new experiment at Fermilab will measure the anomalous magnetic moment of the muon with a precision of 140 parts per billion (ppb). This measurement is motivated by the results of the Brookhaven E821 experiment that were first released more than a d ecade ago, which reached a precision of 540 ppb. As the corresponding Standard Model predictions have been refined, the experimental and theoretical values have persistently differed by about 3 standard deviations. If the Brookhaven result is confirmed at Fermilab with this improved precision, it will constitute definitive evidence for physics beyond the Standard Model. The experiment observes the muon spin precession frequency in flight in a well-calibrated magnetic field; the improvement in precision will require both 20 times as many recorded muon decay events as in E821 and a reduction by a factor of 3 in the systematic uncertainties. This paper describes the current experimental status as well as the plans for the upgraded magnet, detector and storage ring systems that are being prepared for the start of beam data collection in 2017.
432 - S. Kopp 2005
We present recent beam data from a new design of a profile monitor for proton beams at Fermilab. The monitors, consisting of grids of segmented Ti foils 5micrometers thick, are secondary-electron emission monitors (SEMs). We review data on the device s precision on beam centroid position, beam width, and on beam loss associated with the SEM material placed in the beam.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا