ﻻ يوجد ملخص باللغة العربية
Electrically-driven optical antennas can serve as compact sources of electromagnetic radiation operating at optical frequencies. In the most widely explored configurations, the radiation is generated by electrons tunneling between metallic parts of the structure when a bias voltage is applied across the tunneling gap. Rather than relying on an inherently inefficient inelastic light emission in the gap, we suggest to use a ballistic nanoconstriction as the feed element of an optical antenna supporting plasmonic modes. We discuss the underlying mechanisms responsible for the optical emission, and show that with such a nanoscale contact, one can reach quantum efficiency orders of magnitude larger than with standard light-emitting tunneling structures.
Compact and electrically controllable on-chip sources of indistinguishable photons are desirable for the development of integrated quantum technologies. We demonstrate that two quantum dot light emitting diodes (LEDs) in close proximity on a single c
All-optical switching (AOS) of magnetic domains by femtosecond laser pulses was first observed in the transition metal-rare earth (TM-RE) alloy GdFeCo1-5; this phenomenon demonstrated the potential for optical control of magnetism for the development
We examine the intrinsic energy dissipation steps in electrically biased graphene channels. By combining in-situ measurements of the spontaneous optical emission with a Raman spectroscopy study of the graphene sample under conditions of current flow,
Recent advances in nanotechnology have created tremendous excitement across different disciplines but in order to fully control and manipulate nano-scale objects, we must understand the forces at work at the nano-scale, which can be very different fr
We report the observation of multiple harmonic generation in electric dipole spin resonance in an InAs nanowire double quantum dot. The harmonics display a remarkable detuning dependence: near the interdot charge transition as many as eight harmonics