ﻻ يوجد ملخص باللغة العربية
Compact and electrically controllable on-chip sources of indistinguishable photons are desirable for the development of integrated quantum technologies. We demonstrate that two quantum dot light emitting diodes (LEDs) in close proximity on a single chip can function as a tunable, all-electric quantum light source. Light emitted by an electrically excited driving LED is used to excite quantum dots the neighbouring diode. The wavelength of the quantum dot emission from the neighbouring driven diode is tuned via the quantum confined Stark effect. We also show that we can electrically tune the fine structure splitting.
We demonstrate that the spin of optically addressable point defects can be coherently driven with AC electric fields. Based on magnetic-dipole forbidden spin transitions, this scheme enables spatially confined spin control, the imaging of high-freque
Electrically-driven optical antennas can serve as compact sources of electromagnetic radiation operating at optical frequencies. In the most widely explored configurations, the radiation is generated by electrons tunneling between metallic parts of t
Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons.
It is well known that stacking domains form in moire superlattices due to the competition between the interlayer van der Waals forces and intralayer elastic forces, which can be recognized as polar domains due to the local spontaneous polarization in
We demonstrate the first wavelength-tunable electrically-pumped source of non-classical light that can emit photons with wavelength in resonance with the D2 transitions of 87Rb atoms. The device is fabricated by integrating a novel GaAs single-quantu