ﻻ يوجد ملخص باللغة العربية
We examine the intrinsic energy dissipation steps in electrically biased graphene channels. By combining in-situ measurements of the spontaneous optical emission with a Raman spectroscopy study of the graphene sample under conditions of current flow, we obtain independent information on the energy distribution of the electrons and phonons. The electrons and holes contributing to light emission are found to obey a thermal distribution, with temperatures in excess of 1500 K in the regime of current saturation. The zone-center optical phonons are also highly excited and are found to be in equilibrium with the electrons. For a given optical phonon temperature, the anharmonic downshift of the Raman G-mode is smaller than expected under equilibrium conditions, suggesting that the electrons and high-energy optical phonons are not fully equilibrated with all of the phonon modes.
Using electrical transport experiments and shot noise thermometry, we investigate electron-phonon heat transfer rate in a suspended bilayer graphene. Contrary to monolayer graphene with heat flow via three-body supercollision scattering, we find that
The possibility of superconducting pairing of electrons in doped graphene due to in-plane and out-of-plane phonons is studied. Quadratic coupling of electrons with out-of-plane phonons is considered in details, taking into account both deformation po
We examine the nature of the transitions between the normal and the superconducting branches of superconductor-graphene-superconductor Josephson junctions. We attribute the hysteresis between the switching (superconducting to normal) and retrapping (
We investigate the basic charge and heat transport properties of charge neutral epigraphene at sub-kelvin temperatures, demonstrating nearly logarithmic dependence of electrical conductivity over more than two decades in temperature. Using graphenes
Bilayers of graphitic materials have potential applications in field effect transistors (FETs). A potential difference applied between certain ionic bilayers made from insulating graphitic materials such as BN, ZnO and AlN could reduce gap sizes, tur