ﻻ يوجد ملخص باللغة العربية
All-optical switching (AOS) of magnetic domains by femtosecond laser pulses was first observed in the transition metal-rare earth (TM-RE) alloy GdFeCo1-5; this phenomenon demonstrated the potential for optical control of magnetism for the development of ever faster future magnetic recording technologies. The technological potential of AOS has recently increased due to the discovery of the same effect in other materials, including RE-free magnetic multilayers6,7. However, to be technologically meaningful, AOS must compete with the bit densities of conventional storage devices, restricting optically-switched magnetic areas to sizes well below the diffraction limit. Here, we demonstrate reproducible and robust all-optical switching of magnetic domains of 53 nm size in a ferrimagnetic TbFeCo alloy using gold plasmonic antenna structures. The confined nanoscale magnetic reversal is imaged around and beneath plasmonic antennas using x-ray resonant holographic imaging. Our results demonstrate the potential of future AOS-based magnetic recording technologies.
Nanoplasmonic systems combined with optically-active two-dimensional materials provide intriguing opportunities to explore and control light-matter interactions at extreme sub-wavelength lengthscales approaching the exciton Bohr radius. Here, we pres
Using time-resolved magneto-optical Kerr effect (TR-MOKE) method, helicity-dependent all-optical magnetization switching (HD-AOS) is observed in ferrimagnetic TbFeCo films. The thermal effect and opto-magneto effects are separately justified after si
We resolve a significant controversy about how to understand and engineer single-shot all-optical switching of magnetization in ferrimagnets using femto- or picosecond-long heat pulses. By realistically modelling a generic ferrimagnet as two coupled
Electrically-driven optical antennas can serve as compact sources of electromagnetic radiation operating at optical frequencies. In the most widely explored configurations, the radiation is generated by electrons tunneling between metallic parts of t
Future information technology demands ultimately fast, low-loss quantum control. Intense light fields have facilitated important milestones, such as inducing novel states of matter, accelerating electrons ballistically, or coherently flipping the val