ﻻ يوجد ملخص باللغة العربية
This project investigates numerical methods for solving fully coupled forward-backward stochastic differential equations (FBSDEs) of McKean-Vlasov type. Having numerical solvers for such mean field FBSDEs is of interest because of the potential application of these equations to optimization problems over a large population, say for instance mean field games (MFG) and optimal mean field control problems. Theory for this kind of problems has met with great success since the early works on mean field games by Lasry and Lions, see cite{Lasry_Lions}, and by Huang, Caines, and Malham{e}, see cite{Huang}. Generally speaking, the purpose is to understand the continuum limit of optimizers or of equilibria (say in Nash sense) as the number of underlying players tends to infinity. When approached from the probabilistic viewpoint, solutions to these control problems (or games) can be described by coupled mean field FBSDEs, meaning that the coefficients depend upon the own marginal laws of the solution. In this note, we detail two methods for solving such FBSDEs which we implement and apply to five benchmark problems. The first method uses a tree structure to represent the pathwise laws of the solution, whereas the second method uses a grid discretization to represent the time marginal laws of the solutions. Both are based on a Picard scheme; importantly, we combine each of them with a generic continuation method that permits to extend the time horizon (or equivalently the coupling strength between the two equations) for which the Picard iteration converges.
We propose a new approach for deriving probabilistic inequalities based on bounding likelihood ratios. We demonstrate that this approach is more general and powerful than the classical method frequently used for deriving concentration inequalities su
The local volatility model is a widely used for pricing and hedging financial derivatives. While its main appeal is its capability of reproducing any given surface of observed option prices---it provides a perfect fit---the essential component is a l
We discuss a general formalism for numerically evolving initial data in general relativity in which the (complex) Ashtekar connection and the Newman-Penrose scalars are taken as the dynamical variables. In the generic case three gauge constraints and
The forecast of the time of arrival of a coronal mass ejection (CME) to Earth is of critical importance for our high-technology society and for any future manned exploration of the Solar System. As critical as the forecast accuracy is the knowledge o
We provide a necessary and sufficient condition for the metastability of a Markov chain, expressed in terms of a property of the solutions of the resolvent equation. As an application of this result, we prove the metastability of reversible, critical