ترغب بنشر مسار تعليمي؟ اضغط هنا

A Probabilistic Approach to Nonparametric Local Volatility

57   0   0.0 ( 0 )
 نشر من قبل Martin Tegner
 تاريخ النشر 2019
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

The local volatility model is a widely used for pricing and hedging financial derivatives. While its main appeal is its capability of reproducing any given surface of observed option prices---it provides a perfect fit---the essential component is a latent function which can be uniquely determined only in the limit of infinite data. To (re)construct this function, numerous calibration methods have been suggested involving steps of interpolation and extrapolation, most often of parametric form and with point-estimate representations. We look at the calibration problem in a probabilistic framework with a nonparametric approach based on a Gaussian process prior. This immediately gives a way of encoding prior beliefs about the local volatility function and a hypothesis model which is highly flexible yet not prone to over-fitting. Besides providing a method for calibrating a (range of) point-estimate(s), we draw posterior inference from the distribution over local volatility. This leads to a better understanding of uncertainty associated with the calibration in particular, and with the model in general. Further, we infer dynamical properties of local volatility by augmenting the hypothesis space with a time dimension. Ideally, this provides predictive distributions not only locally, but also for entire surfaces forward in time. We apply our approach to S&P 500 market data.

قيم البحث

اقرأ أيضاً

We propose a fully data-driven approach to calibrate local stochastic volatility (LSV) models, circumventing in particular the ad hoc interpolation of the volatility surface. To achieve this, we parametrize the leverage function by a family of feed-f orward neural networks and learn their parameters directly from the available market option prices. This should be seen in the context of neural SDEs and (causal) generative adversarial networks: we generate volatility surfaces by specific neural SDEs, whose quality is assessed by quantifying, possibly in an adversarial manner, distances to market prices. The minimization of the calibration functional relies strongly on a variance reduction technique based on hedging and deep hedging, which is interesting in its own right: it allows the calculation of model prices and model implied volatilities in an accurate way using only small sets of sample paths. For numerical illustration we implement a SABR-type LSV model and conduct a thorough statistical performance analysis on many samples of implied volatility smiles, showing the accuracy and stability of the method.
We propose a general, very fast method to quickly approximate the solution of a parabolic Partial Differential Equation (PDEs) with explicit formulas. Our method also provides equaly fast approximations of the derivatives of the solution, which is a challenge for many other methods. Our approach is based on a computable series expansion in terms of a small parameter. As an example, we treat in detail the important case of the SABR PDE for $beta = 1$, namely $partial_{tau}u = sigma^2 big [ frac{1}{2} (partial^2_xu - partial_xu) + u rho partial_xpartial_sigma u + frac{1}{2} u^2 partial^2_sigma u , big ] + kappa (theta - sigma) partial_sigma$, by choosing $ u$ as small parameter. This yields $u = u_0 + u u_1 + u^2 u_2 + ldots$, with $u_j$ independent of $ u$. The terms $u_j$ are explicitly computable, which is also a challenge for many other, related methods. Truncating this expansion leads to computable approximations of $u$ that are in closed form, and hence can be evaluated very quickly. Most of the other related methods use the time $tau$ as a small parameter. The advantage of our method is that it leads to shorter and hence easier to determine and to generalize formulas. We obtain also an explicit expansion for the implied volatility in the SABR model in terms of $ u$, similar to Hagans formula, but including also the {em mean reverting term.} We provide several numerical tests that show the performance of our method. In particular, we compare our formula to the one due to Hagan. Our results also behave well when used for actual market data and show the mean reverting property of the volatility.
We derive a backward and forward nonlinear PDEs that govern the implied volatility of a contingent claim whenever the latter is well-defined. This would include at least any contingent claim written on a positive stock price whose payoff at a possibl y random time is convex. We also discuss suitable initial and boundary conditions for those PDEs. Finally, we demonstrate how to solve them numerically by using an iterative finite-difference approach.
We propose a novel algorithm which allows to sample paths from an underlying price process in a local volatility model and to achieve a substantial variance reduction when pricing exotic options. The new algorithm relies on the construction of a disc rete multinomial tree. The crucial feature of our approach is that -- in a similar spirit to the Brownian Bridge -- each random path runs backward from a terminal fixed point to the initial spot price. We characterize the tree in two alternative ways: in terms of the optimal grids originating from the Recursive Marginal Quantization algorithm and following an approach inspired by the finite difference approximation of the diffusions infinitesimal generator. We assess the reliability of the new methodology comparing the performance of both approaches and benchmarking them with competitor Monte Carlo methods.
In this paper, a new numerical method based on adaptive gradient descent optimizers is provided for computing the implied volatility from the Black-Scholes (B-S) option pricing model. It is shown that the new method is more accurate than the close fo rm approximation. Compared with the Newton-Raphson method, the new method obtains a reliable rate of convergence and tends to be less sensitive to the beginning point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا