ترغب بنشر مسار تعليمي؟ اضغط هنا

A Resolvent Approach to Metastability

52   0   0.0 ( 0 )
 نشر من قبل Diego Marcondes
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a necessary and sufficient condition for the metastability of a Markov chain, expressed in terms of a property of the solutions of the resolvent equation. As an application of this result, we prove the metastability of reversible, critical zero-range processes starting from a configuration.



قيم البحث

اقرأ أيضاً

103 - F.Manzo , E.Scoppola 2018
In the setting of non-reversible Markov chains on finite or countable state space, exact results on the distribution of the first hitting time to a given set $G$ are obtained. A new notion of strong metastability time is introduced to describe the lo cal relaxation time. This time is defined via a generalization of the strong stationary time to a conditionally strong quasi-stationary time(CSQST). Rarity of the target set $G$ is not required and the initial distribution can be completely general. The results clarify the the role played by the initial distribution on the exponential law; they are used to give a general notion of metastability and to discuss the relation between the exponential distribution of the first hitting time and metastability.
206 - F. Hiai , D. Petz 2007
A new expression as a certain asymptotic limit via discrete micro-states of permutations is provided to the mutual information of both continuous and discrete random variables.
133 - Christian Leonard 2007
A probabilistic method for solving the Monge-Kantorovich mass transport problem on $R^d$ is introduced. A system of empirical measures of independent particles is built in such a way that it obeys a doubly indexed large deviation principle with an op timal transport cost as its rate function. As a consequence, new approximation results for the optimal cost function and the optimal transport plans are derived. They follow from the Gamma-convergence of a sequence of normalized relative entropies toward the optimal transport cost. A wide class of cost functions including the standard power cost functions $|x-y|^p$ enter this framework.
It is well know that $SLE_kappa$ curves exhibit a phase transition at $kappa=4$. For $kappale 4$ they are simple curves with probability one, for $kappa>4$ they are not. The standard proof is based on the analysis of the Bessel SDE of dimension $d=1+ 4/kappa$. We propose a different approach which is based on the analysis of the Bessel SDE with $d=1-4/kappa$. This not only gives a new perspective, but also allows to describe the formation of the SLE `bubbles for $kappa>4$.
It is well known that the behaviour of a branching process is completely described by the generating function of the offspring law and its fixed points. Branching random walks are a natural generalization of branching processes: a branching process c an be seen as a one-dimensional branching random walk. We define a multidimensional generating function associated to a given branching random walk. The present paper investigates the similarities and the differences of the generating functions, their fixed points and the implications on the underlying stochastic process, between the one-dimensional (branching process) and the multidimensional case (branching random walk). In particular, we show that the generating function of a branching random walk can have uncountably many fixed points and a fixed point may not be an extinction probability, even in the irreducible case (extinction probabilities are always fixed points). Moreover, the generating function might not be a convex function. We also study how the behaviour of a branching random walk is affected by local modifications of the process. As a corollary, we describe a general procedure with which we can modify a continuous-time branching random walk which has a weak phase and turn it into a continuous-time branching random walk which has strong local survival for large or small values of the parameter and non-strong local survival for intermediate values of the parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا