ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of Radiative Electron Polarization in Strong Laser Fields

63   0   0.0 ( 0 )
 نشر من قبل Daniel Seipt
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radiative polarization of electrons and positrons through the Sokolov-Ternov effect is important for applications in high-energy physics. Radiative spin-polarization is a manifestation of quantum radiation reaction affecting the spin-dynamics of electrons. We recently proposed that an analogue of the Sokolov-Ternov effect could occur in the strong electromagnetic fields of ultra-high-intensity lasers, which would result in a build-up of spin-polarization in femtoseconds. In this paper we develop a density matrix formalism for describing beam polarization in strong electromagnetic fields. We start by using the density matrix formalism to study spin-flips in non-linear Compton scattering and its dependence on the initial polarization state of the electrons. Numerical calculations show a radial polarization of the scattered electron beam in a circularly polarized laser, and we find azimuthal asymmetries in the polarization patterns for ultra-short laser pulses. A degree of polarization approaching 9 % is achieved after emitting just a single photon. We develop the theory by deriving a local constant crossed field approximation (LCFA) for the polarization density matrix, which is a generalization of the well known LCFA scattering rates. We find spin-dependent expressions that may be included in electromagnetic charged-particle simulation codes, such as particle-in-cell plasma simulation codes, using Monte-Carlo modules. In particular, these expressions include the spin-flip rates for arbitrary initial polarization of the electrons. The validity of the LCFA is confirmed by explicit comparison with an exact QED calculation of electron polarization in an ultrashort laser pulse.

قيم البحث

اقرأ أيضاً

The ionization of two-active-electron systems by intense laser fields is investigated theoretically. In comparison with time-dependent Hartree-Fock and exact two electron simulation, we show that the ionization rate is overestimated in SAE approximat ion. A modified single-active-electron model is formulated by taking into account of the dynamical core polarization. Applying the new approach to Ca atoms, it is found that the polarization of the core can be considered instantaneous and the large polarizability of the cation suppresses the ionization by 50% while the photoelectron cut-off energy increases slightly. The existed tunneling ionization formulation can be corrected analytically by considering core polarization.
Based on a combined quantum-classical treatment, a complete study of the strong field dynamics of H2+, i.e. including all nuclear and electronic DOF as well as dissociation and ionization, is presented. We find that the ro-vibrational nuclear dynamic s enhances dissociation and, at the same time, suppresses ionization, confirming experimental observations by I. Ben-Itzhak et al. [Phys. Rev. Lett. 95, 073002 (2005)]. In addition and counter-intuitively, it is shown that for large initial vibrational excitation ionization takes place favorably at large angles between the laser polarization and molecular axis. A local ionization model delivers a transparent explanation of these findings.
Interaction of an ultrastrong short laser pulse with non-prepolarized near-critical density plasma is investigated in an ultrarelativistic regime, with an emphasis on the radiative spin polarization of ejected electrons. Our particle-in-cell simulati ons show explicit correlations between the angle resolved electron polarization and the structure and properties of the transient quasistatic plasma magnetic field. While the magnitude of the spin signal is the indicator of the magnetic field strength created by the longitudinal electron current, the asymmetry of electron polarization is found to gauge the island-like magnetic distribution which emerges due to the transverse current induced by the laser wave front. Our studies demonstrate that the spin degree of freedom of ejected electrons could potentially serve as an efficient tool to retrieve the features of strong plasma fields.
The pair-production process in the presence of strong linearly polarized laser fields with a subcycle structure is considered. Laser pulses with different envelope shapes are examined by means of a nonperturbative numerical technique. We analyze two different flat envelope shapes and two shapes without a plateau for their various parameters including the carrier-envelope phase. The resonant Rabi oscillations, momentum distribution of particles created, and total number of pairs are studied. It is demonstrated that all these characteristics are very sensitive to the pulse shape.
Deep understanding of photon polarization impact on pair production is essential for the efficient creation of laser driven polarized positron beams, and demands a complete description of polarization effects in strong-field QED processes. We investi gate, employing fully polarization resolved Monte Carlo simulations, the correlated photon and electron (positron) polarization effects in multiphoton Breit-Wheeler pair production process during the interaction of an ultrarelativistic electron beam with a counterpropagating elliptically polarized laser pulse. We showed that the polarization of e^-e^+ pairs is degraded by 35%, when the polarization of the intermediate photon is resolved, accompanied with an approximately 13% decrease of the pair yield. Moreover, the polarization direction of energetic positrons in small angle region is reversed, which originates from the pair production of hard photons with polarization parallel with electric field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا