ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical core polarization of two-active-electron systems in strong laser fields

85   0   0.0 ( 0 )
 نشر من قبل Zengxiu Zhao
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ionization of two-active-electron systems by intense laser fields is investigated theoretically. In comparison with time-dependent Hartree-Fock and exact two electron simulation, we show that the ionization rate is overestimated in SAE approximation. A modified single-active-electron model is formulated by taking into account of the dynamical core polarization. Applying the new approach to Ca atoms, it is found that the polarization of the core can be considered instantaneous and the large polarizability of the cation suppresses the ionization by 50% while the photoelectron cut-off energy increases slightly. The existed tunneling ionization formulation can be corrected analytically by considering core polarization.

قيم البحث

اقرأ أيضاً

Radiative polarization of electrons and positrons through the Sokolov-Ternov effect is important for applications in high-energy physics. Radiative spin-polarization is a manifestation of quantum radiation reaction affecting the spin-dynamics of elec trons. We recently proposed that an analogue of the Sokolov-Ternov effect could occur in the strong electromagnetic fields of ultra-high-intensity lasers, which would result in a build-up of spin-polarization in femtoseconds. In this paper we develop a density matrix formalism for describing beam polarization in strong electromagnetic fields. We start by using the density matrix formalism to study spin-flips in non-linear Compton scattering and its dependence on the initial polarization state of the electrons. Numerical calculations show a radial polarization of the scattered electron beam in a circularly polarized laser, and we find azimuthal asymmetries in the polarization patterns for ultra-short laser pulses. A degree of polarization approaching 9 % is achieved after emitting just a single photon. We develop the theory by deriving a local constant crossed field approximation (LCFA) for the polarization density matrix, which is a generalization of the well known LCFA scattering rates. We find spin-dependent expressions that may be included in electromagnetic charged-particle simulation codes, such as particle-in-cell plasma simulation codes, using Monte-Carlo modules. In particular, these expressions include the spin-flip rates for arbitrary initial polarization of the electrons. The validity of the LCFA is confirmed by explicit comparison with an exact QED calculation of electron polarization in an ultrashort laser pulse.
The orientation-dependent strong-field ionization of CO molecules is investigated using the fully propagated three-dimensional time-dependent Hartree-Fock theory. The full ionization results are in good agreement with recent experiments. The comparis ons between the full method and single active orbital (SAO) method show that although the core electrons are generally more tightly bounded and contribute little to the total ionization yields, their dynamics cannot be ignored, which effectively modify the behaviors of electrons in the highest occupied molecular orbital. By incorporating it into the SAO method, we identify that the dynamic core polarization plays an important role in the strong-field tunneling ionization of CO molecules, which is helpful for future development of tunneling ionization theory of molecules beyond single active electron approximation.
118 - Shilin Hu , Xiaolei Hao , Hang Lv 2019
Neutral atoms have been observed to survive intense laser pulses in high Rydberg states with surprisingly large probability. Only with this Rydberg-state excitation (RSE) included is the picture of intense-laser-atom interaction complete. Various mec hanisms have been proposed to explain the underlying physics. However, neither one can explain all the features observed in experiments and in time-dependent Schr{o}dinger equation (TDSE) simulations. Here we propose a fully quantum-mechanical model based on the strong-field approximation (SFA). It well reproduces the intensity dependence of RSE obtained by the TDSE, which exhibits a series of modulated peaks. They are due to recapture of the liberated electron and the fact that the pertinent probability strongly depends on the position and the parity of the Rydberg state. We also present measurements of RSE in xenon at 800 nm, which display the peak structure consistent with the calculations.
82 - Min Li , Peng Zhang , Siqiang Luo 2015
High-resolution photoelectron momentum distributions of Xe atoms ionized by 800-nm linearly polarized laser fields have been traced at intensities from 1.1*1013 to 3.5*1013W/cm2 using velocity-map imaging techniques. At certain laser intensities, the momentum spectrum exhibits a distinct double-ring structure for low-order above-threshold ionization, which appears to be absent at lower or higher laser intensities. By investigating the intensity-resolved photoelectron energy spectrum, we find that this double-ring structure originates from resonant multiphoton ionization involving multiple Rydberg states of atoms. Varying the laser intensity, we can selectively enhance the resonant multiphoton ionization through certain atomic Rydberg states. The photoelectron angular distributions of multiphoton resonance are also investigated for the low-order above-threshold ionization.
94 - Moto Togawa 2020
We resonantly excite the $K$ series of O$^{5+}$ and O$^{6+}$ up to principal quantum number $n=11$ with monochromatic x rays, producing $K$-shell holes, and observe their relaxation by soft-x-ray emission. Some photoabsorption resonances of O$^{5+}$ reveal strong two-electron--one-photon (TEOP) transitions. We find that for the $[(1s,2s)_1,5p_{3/2}]_{3/2;1/2}$ states, TEOP relaxation is by far stronger than the radiative decay and competes with the usually much faster Auger decay path. This enhanced TEOP decay arises from a strong correlation with the near-degenerate upper states $[(1s,2p_{3/2})_1,4s]_{3/2;1/2}$ of a Li-like satellite blend of the He-like $Kalpha$ transition. Even in three-electron systems, TEOP transitions can play a dominant role, and the present results should guide further research on the ubiquitous and abundant many-electron ions where electronic energy degeneracies are far more common and configuration mixing is stronger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا