ﻻ يوجد ملخص باللغة العربية
The pair-production process in the presence of strong linearly polarized laser fields with a subcycle structure is considered. Laser pulses with different envelope shapes are examined by means of a nonperturbative numerical technique. We analyze two different flat envelope shapes and two shapes without a plateau for their various parameters including the carrier-envelope phase. The resonant Rabi oscillations, momentum distribution of particles created, and total number of pairs are studied. It is demonstrated that all these characteristics are very sensitive to the pulse shape.
We optimize the pulse shape and polarization of time-dependent electric fields to maximize the production of electron-positron pairs via strong field quantum electrodynamics processes. The pulse is parametrized in Fourier space by a B-spline polynomi
Deep understanding of photon polarization impact on pair production is essential for the efficient creation of laser driven polarized positron beams, and demands a complete description of polarization effects in strong-field QED processes. We investi
We consider stimulated pair production employing strong-field QED in a high-intensity laser background. In an infinite plane wave, we show that light-cone quasi-momentum can only be transferred to the created pair as a multiple of the laser frequency
We discuss pair creation in a strong laser background. Using lightfront field theory, we show that all the physics is contained in the lightfront momentum transfer from the laser, and probe, to the produced pair. The dependence of this momentum trans
Radiative polarization of electrons and positrons through the Sokolov-Ternov effect is important for applications in high-energy physics. Radiative spin-polarization is a manifestation of quantum radiation reaction affecting the spin-dynamics of elec