ترغب بنشر مسار تعليمي؟ اضغط هنا

Text Generation with Efficient (Soft) Q-Learning

103   0   0.0 ( 0 )
 نشر من قبل Han Guo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Maximum likelihood estimation (MLE) is the predominant algorithm for training text generation models. This paradigm relies on direct supervision examples, which is not applicable to many applications, such as generating adversarial attacks or generating prompts to control language models. Reinforcement learning (RL) on the other hand offers a more flexible solution by allowing users to plug in arbitrary task metrics as reward. Yet previous RL algorithms for text generation, such as policy gradient (on-policy RL) and Q-learning (off-policy RL), are often notoriously inefficient or unstable to train due to the large sequence space and the sparse reward received only at the end of sequences. In this paper, we introduce a new RL formulation for text generation from the soft Q-learning perspective. It further enables us to draw from the latest RL advances, such as path consistency learning, to combine the best of on-/off-policy updates, and learn effectively from sparse reward. We apply the approach to a wide range of tasks, including learning from noisy/negative examples, adversarial attacks, and prompt generation. Experiments show our approach consistently outperforms both task-specialized algorithms and the previous RL methods. On standard supervised tasks where MLE prevails, our approach also achieves competitive performance and stability by training text generation from scratch.



قيم البحث

اقرأ أيضاً

Text generation is a crucial task in NLP. Recently, several adversarial generative models have been proposed to improve the exposure bias problem in text generation. Though these models gain great success, they still suffer from the problems of rewar d sparsity and mode collapse. In order to address these two problems, in this paper, we employ inverse reinforcement learning (IRL) for text generation. Specifically, the IRL framework learns a reward function on training data, and then an optimal policy to maximum the expected total reward. Similar to the adversarial models, the reward and policy function in IRL are optimized alternately. Our method has two advantages: (1) the reward function can produce more dense reward signals. (2) the generation policy, trained by entropy regularized policy gradient, encourages to generate more diversified texts. Experiment results demonstrate that our proposed method can generate higher quality texts than the previous methods.
Text generation with generative adversarial networks (GANs) can be divided into the text-based and code-based categories according to the type of signals used for discrimination. In this work, we introduce a novel text-based approach called Soft-GAN to effectively exploit GAN setup for text generation. We demonstrate how autoencoders (AEs) can be used for providing a continuous representation of sentences, which we will refer to as soft-text. This soft representation will be used in GAN discrimination to synthesize similar soft-texts. We also propose hybrid latent code and text-based GAN (LATEXT-GAN) approaches with one or more discriminators, in which a combination of the latent code and the soft-text is used for GAN discriminations. We perform a number of subjective and objective experiments on two well-known datasets (SNLI and Image COCO) to validate our techniques. We discuss the results using several evaluation metrics and show that the proposed techniques outperform the traditional GAN-based text-generation methods.
Prototype-driven text generation uses non-parametric models that first choose from a library of sentence prototypes and then modify the prototype to generate the output text. While effective, these methods are inefficient at test time as a result of needing to store and index the entire training corpus. Further, existing methods often require heuristics to identify which prototypes to reference at training time. In this paper, we propose a novel generative model that automatically learns a sparse prototype support set that, nonetheless, achieves strong language modeling performance. This is achieved by (1) imposing a sparsity-inducing prior on the prototype selection distribution, and (2) utilizing amortized variational inference to learn a prototype retrieval function. In experiments, our model outperforms previous prototype-driven language models while achieving up to a 1000x memory reduction, as well as a 1000x speed-up at test time. More interestingly, we show that the learned prototypes are able to capture semantics and syntax at different granularity as we vary the sparsity of prototype selection, and that certain sentence attributes can be controlled by specifying the prototype for generation.
299 - Qingyang Wu , Lei Li , Zhou Yu 2020
Generative Adversarial Networks (GANs) for text generation have recently received many criticisms, as they perform worse than their MLE counterparts. We suspect previous text GANs inferior performance is due to the lack of a reliable guiding signal i n their discriminators. To address this problem, we propose a generative adversarial imitation learning framework for text generation that uses large pre-trained language models to provide more reliable reward guidance. Our approach uses contrastive discriminator, and proximal policy optimization (PPO) to stabilize and improve text generation performance. For evaluation, we conduct experiments on a diverse set of unconditional and conditional text generation tasks. Experimental results show that TextGAIL achieves better performance in terms of both quality and diversity than the MLE baseline. We also validate our intuition that TextGAILs discriminator demonstrates the capability of providing reasonable rewards with an additional task.
In this work, we address the problem of modifying textual attributes of sentences. Given an input sentence and a set of attribute labels, we attempt to generate sentences that are compatible with the conditioning information. To ensure that the model generates content compatible sentences, we introduce a reconstruction loss which interpolates between auto-encoding and back-translation loss components. We propose an adversarial loss to enforce generated samples to be attribute compatible and realistic. Through quantitative, qualitative and human evaluations we demonstrate that our model is capable of generating fluent sentences that better reflect the conditioning information compared to prior methods. We further demonstrate that the model is capable of simultaneously controlling multiple attributes.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا