ترغب بنشر مسار تعليمي؟ اضغط هنا

Are quantum thermodynamic machines better than their classical counterparts?

141   0   0.0 ( 0 )
 نشر من قبل Arnab Ghosh
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interesting effects arise in cyclic machines where both heat and ergotropy transfer take place between the energising bath and the system (the working fluid). Such effects correspond to unconventional decompositions of energy exchange between the bath and the system into heat and work, respectively, resulting in efficiency bounds that may surpass the Carnot efficiency. However, these effects are not directly linked with quantumness, but rather with heat and ergotropy, the likes of which can be realised without resorting to quantum mechanics.



قيم البحث

اقرأ أيضاً

We study coupled quantum systems as the working media of thermodynamic machines. Under a suitable phase-space transformation, the coupled systems can be expressed as a composition of independent subsystems. We find that for the coupled systems, the f igures of merit, that is the efficiency for engine and the coefficient of performance for refrigerator, are bounded (both from above and from below) by the corresponding figures of merit of the independent subsystems. We also show that the optimum work extractable from a coupled system is upper bounded by the optimum work obtained from the uncoupled system, thereby showing that the quantum correlations do not help in optimal work extraction. Further, we study two explicit examples, coupled spin-$1/2$ systems and coupled quantum oscillators with analogous interactions. Interestingly, for particular kind of interactions, the efficiency of the coupled oscillators outperforms that of the coupled spin-$1/2$ systems when they work as heat engines. However, for the same interaction, the coefficient of performance behaves in a reverse manner, while the systems work as the refrigerator. Thus the same coupling can cause opposite effects in the figures of merit of heat engine and refrigerator.
A clock is, from an information-theoretic perspective, a system that emits information about time. One may therefore ask whether the theory of information imposes any constraints on the maximum precision of clocks. Here we show a quantum-over-classic al advantage for clocks or, more precisely, the task of generating information about what time it is. The argument is based on information-theoretic considerations: we analyse how the accuracy of a clock scales with its size, measured in terms of the number of bits that could be stored in it. We find that a quantum clock can achieve a quadratically improved accuracy compared to a purely classical one of the same size.
Thermal machines perform useful tasks--such as producing work, cooling, or heating--by exchanging energy, and possibly additional conserved quantities such as particles, with reservoirs. Here we consider thermal machines that perform more than one us eful task simultaneously, terming these hybrid thermal machines. We outline their restrictions imposed by the laws of thermodynamics and we quantify their performance in terms of efficiencies. To illustrate their full potential, reservoirs that feature multiple conserved quantities, described by generalized Gibbs ensembles, are considered. A minimal model for a hybrid thermal machine is introduced, featuring three reservoirs and two conserved quantities, e.g., energy and particle number. This model can be readily implemented in a thermoelectric setup based on quantum dots, and hybrid regimes are accessible considering realistic parameters.
The importance of a strict quarantine has been widely debated during the COVID-19 epidemic even from the purely epidemiological point of view. One argument against strict lockdown measures is that once the strict quarantine is lifted, the epidemic co mes back, and so the cumulative number of infected individuals during the entire epidemic will stay the same. We consider an SIR model on a network and follow the disease dynamics, modeling the phases of quarantine by changing the node degree distribution. We show that the system reaches different steady states based on the history: the outcome of the epidemic is path-dependent despite the same final node degree distribution. The results indicate that two-phase route to the final node degree distribution (a strict phase followed by a soft phase) are always better than one phase (the same soft one) unless all the individuals have the same number of connections at the end (the same degree); in the latter case, the overall number of infected is indeed history-independent. The modeling also suggests that the optimal procedure of lifting the quarantine consists of releasing nodes in the order of their degree - highest first.
For a Markovian open quantum system it is possible, by continuously monitoring the environment, to know the stochastically evolving pure state of the system without altering the master equation. In general, even for a system with a finite Hilbert spa ce dimension $D$, the pure state trajectory will explore an infinite number of points in Hilbert space, meaning that the dimension $K$ of the classical memory required for the tracking is infinite. However, Karasik and Wiseman [Phys. Rev. Lett., 106(2):020406, 2011] showed that tracking of a qubit ($D=2$) is always possible with a bit ($K=2$), and gave a heuristic argument implying that a finite $K$ should be sufficient for any $D$, although beyond $D=2$ it would be necessary to have $K>D$. Our paper is concerned with rigorously investigating the relationship between $D$ and $K_{rm min}$, the smallest feasible $K$. We confirm the long-standing conjecture of Karasik and Wiseman that, for generic systems with $D>2$, $K_{rm min}>D$, by a computational proof (via Hilbert Nullstellensatz certificates of infeasibility). That is, beyond $D=2$, $D$-dimensional open quantum systems are provably harder to track than $D$-dimensional open classical systems. Moreover, we develop, and better justify, a new heuristic to guide our expectation of $K_{rm min}$ as a function of $D$, taking into account the number $L$ of Lindblad operators as well as symmetries in the problem. The use of invariant subspace and Wigner symmetries makes it tractable to conduct a numerical search, using the method of polynomial homotopy continuation, to find finite physically realizable ensembles (as they are known) in $D=3$. The results of this search support our heuristic. We thus have confidence in the most interesting feature of our heuristic: in the absence of symmetries, $K_{rm min} sim D^2$, implying a quadratic gap between the classical and quantum tracking problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا