ﻻ يوجد ملخص باللغة العربية
For a Markovian open quantum system it is possible, by continuously monitoring the environment, to know the stochastically evolving pure state of the system without altering the master equation. In general, even for a system with a finite Hilbert space dimension $D$, the pure state trajectory will explore an infinite number of points in Hilbert space, meaning that the dimension $K$ of the classical memory required for the tracking is infinite. However, Karasik and Wiseman [Phys. Rev. Lett., 106(2):020406, 2011] showed that tracking of a qubit ($D=2$) is always possible with a bit ($K=2$), and gave a heuristic argument implying that a finite $K$ should be sufficient for any $D$, although beyond $D=2$ it would be necessary to have $K>D$. Our paper is concerned with rigorously investigating the relationship between $D$ and $K_{rm min}$, the smallest feasible $K$. We confirm the long-standing conjecture of Karasik and Wiseman that, for generic systems with $D>2$, $K_{rm min}>D$, by a computational proof (via Hilbert Nullstellensatz certificates of infeasibility). That is, beyond $D=2$, $D$-dimensional open quantum systems are provably harder to track than $D$-dimensional open classical systems. Moreover, we develop, and better justify, a new heuristic to guide our expectation of $K_{rm min}$ as a function of $D$, taking into account the number $L$ of Lindblad operators as well as symmetries in the problem. The use of invariant subspace and Wigner symmetries makes it tractable to conduct a numerical search, using the method of polynomial homotopy continuation, to find finite physically realizable ensembles (as they are known) in $D=3$. The results of this search support our heuristic. We thus have confidence in the most interesting feature of our heuristic: in the absence of symmetries, $K_{rm min} sim D^2$, implying a quadratic gap between the classical and quantum tracking problems.
We derive a quantum master equation to treat quantum systems interacting with multiple reservoirs. The formalism is used to investigate atomic transport across a variety of lattice configurations. We demonstrate how the behavior of an electronic diod
Perturbation theory (PT) is a powerful and commonly used tool in the investigation of closed quantum systems. In the context of open quantum systems, PT based on the Markovian quantum master equation is much less developed. The investigation of open
The underlying probabilistic theory for quantum mechanics is non-Kolmogorovian. The order in which physical observables will be important if they are incompatible (non-commuting). In particular, the notion of conditioning needs to be handled with car
The Hamilton operator of an open quantum system is non-Hermitian. Its eigenvalues are, generally, complex and provide not only the energies but also the lifetimes of the states of the system. The states may couple via the common environment of scatte
For a class of quantized open chaotic systems satisfying a natural dynamical assumption, we show that the study of the resolvent, and hence of scattering and resonances, can be reduced to the study of a family of open quantum maps, that is of finite