ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid Thermal Machines: Generalized Thermodynamic Resources for Multitasking

160   0   0.0 ( 0 )
 نشر من قبل Gonzalo Manzano Paule
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermal machines perform useful tasks--such as producing work, cooling, or heating--by exchanging energy, and possibly additional conserved quantities such as particles, with reservoirs. Here we consider thermal machines that perform more than one useful task simultaneously, terming these hybrid thermal machines. We outline their restrictions imposed by the laws of thermodynamics and we quantify their performance in terms of efficiencies. To illustrate their full potential, reservoirs that feature multiple conserved quantities, described by generalized Gibbs ensembles, are considered. A minimal model for a hybrid thermal machine is introduced, featuring three reservoirs and two conserved quantities, e.g., energy and particle number. This model can be readily implemented in a thermoelectric setup based on quantum dots, and hybrid regimes are accessible considering realistic parameters.



قيم البحث

اقرأ أيضاً

We study coupled quantum systems as the working media of thermodynamic machines. Under a suitable phase-space transformation, the coupled systems can be expressed as a composition of independent subsystems. We find that for the coupled systems, the f igures of merit, that is the efficiency for engine and the coefficient of performance for refrigerator, are bounded (both from above and from below) by the corresponding figures of merit of the independent subsystems. We also show that the optimum work extractable from a coupled system is upper bounded by the optimum work obtained from the uncoupled system, thereby showing that the quantum correlations do not help in optimal work extraction. Further, we study two explicit examples, coupled spin-$1/2$ systems and coupled quantum oscillators with analogous interactions. Interestingly, for particular kind of interactions, the efficiency of the coupled oscillators outperforms that of the coupled spin-$1/2$ systems when they work as heat engines. However, for the same interaction, the coefficient of performance behaves in a reverse manner, while the systems work as the refrigerator. Thus the same coupling can cause opposite effects in the figures of merit of heat engine and refrigerator.
The seminal work by Sadi Carnot in the early nineteenth century provided the blueprint of a reversible heat engine and the celebrated second law of thermodynamics eventually followed. Almost two centuries later, the quest to formulate a quantum theor y of the thermodynamic laws has thus unsurprisingly motivated physicists to visualise what are known as `quantum thermal machines (QTMs). In this article, we review the prominent developments achieved in the theoretical construction as well as understanding of QTMs, beginning from the formulation of their earliest prototypes to recent models. We also present a detailed introduction and highlight recent progress in the rapidly developing field of `quantum batteries.
Interesting effects arise in cyclic machines where both heat and ergotropy transfer take place between the energising bath and the system (the working fluid). Such effects correspond to unconventional decompositions of energy exchange between the bat h and the system into heat and work, respectively, resulting in efficiency bounds that may surpass the Carnot efficiency. However, these effects are not directly linked with quantumness, but rather with heat and ergotropy, the likes of which can be realised without resorting to quantum mechanics.
The precise estimation of small parameters is a challenging problem in quantum metrology. Here, we introduce a protocol for accurately measuring weak magnetic fields using a two-level magnetometer, which is coupled to two (hot and cold) thermal baths and operated as a two-stroke quantum thermal machine. Its working substance consists of a two-level system (TLS), generated by an unknown weak magnetic field acting on a qubit, and a second TLS arising due to the application of a known strong and tunable field on another qubit. Depending on this field, the machine may either act as an engine or a refrigerator. Under feasible conditions, determining this transition point allows to reduce the relative error of the measurement of the weak unknown magnetic field by the ratio of the temperatures of the colder bath to the hotter bath.
Some of the oldest and most important applications of thermodynamics are operations of refrigeration as well as production of useful energy. Part of the efforts to understand and develop thermodynamics in the quantum regime have been focusing on harn essing quantum effects to such operations. In this review we present the recent developments regarding the role of quantum coherences in the performances of thermal machines --the devices realising the above thermodynamic operations. While this is known to be an intricate subject, in part because being largely model-dependent, the review of the recent results allow us to identify some general tendencies and to suggest some future directions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا