ﻻ يوجد ملخص باللغة العربية
The interaction between magnetic and acoustic excitations have recently inspired many interdisciplinary studies ranging from fundamental physics to circuit implementation. Specifically, the exploration of their coherent interconversion enabled via the magnetoelastic coupling opens a new playground combining straintronics and spintronics, and provides a unique platform for building up on-chip coherent information processing networks with miniaturized magnonic and acoustic devices. In this Perspective, we will focus on the recent progress of magnon-phonon coupled dynamic systems, including materials, circuits, imaging and new physics. In particular, we highlight the unique features such as nonreciprocal acoustic wave propagation and strong coupling between magnons and phonons in magnetic thin-film systems, which provides a unique platform for their coherent manipulation and transduction. We will also review the frontier of surface acoustic wave resonators in coherent quantum transduction and discuss how the novel acoustic circuit design can be applied in microwave spintronics.
Spin and lattice dynamics of CaMn7O12 ceramics were investigated using infrared, THz and inelastic neutron scattering (INS) spectroscopies in the temperature range 2 to 590 K, and, at low temperatures, in applied magnetic fields of up to 12 T. On coo
Inspired by concepts developed for fermionic systems in the framework of condensed matter physics, topology and topological states are recently being explored also in bosonic systems. The possibility of engineering systems with unidirectional wave pr
We report time- and angle-resolved photoemission spectroscopy measurements on the Sb(111) surface. We observe band- and momentum-dependent binding-energy oscillations in the bulk and surface bands driven by $A_{1g}$ and $E_{g}$ coherent phonons. Whil
Emergent cooperative motions of individual degrees of freedom, i.e. collective excitations, govern the low-energy response of system ground states under external stimulations and play essential roles for understanding many-body phenomena in low-dimen
We investigate the performance of niobium nitride superconducting coplanar waveguide resonators towards hybrid quantum devices with magnon-photon coupling. We find internal quality factors ~ 20000 at 20 mK base temperature, in zero magnetic field. We