ﻻ يوجد ملخص باللغة العربية
We present an experimental investigation of collective oscillations in harmonically trapped Fermi gases through the crossover from two to three dimensions. Specifically, we measure the frequency of the radial monopole or breathing mode as a function of dimensionality in Fermi gases with tunable interactions. The frequency of this mode is set by the adiabatic compressibility and probes the thermodynamic equation of state. In 2D, a dynamical scaling symmetry for atoms interacting via a {delta}-potential predicts the breathing mode to occur at exactly twice the harmonic confinement frequency. However, a renormalized quantum treatment introduces a new length scale which breaks this classical scale invariance resulting in a so-called quantum anomaly. Our measurements deep in the 2D regime lie above the scale-invariant prediction for a range of interaction strengths indicating the breakdown of a {delta}-potential model for atomic interactions. As the dimensionality is tuned from 2D to 3D we see the breathing oscillation frequency evolve smoothly towards the 3D limit.
The experimental realization of stable, ultracold Fermi gases near a Feshbach resonance allows to study gases with attractive interactions of essentially arbitrary strength. They extend the classic paradigm of BCS into a regime which has never been a
We have studied the transition from two to three dimensions in a low temperature weakly interacting $^6$Li Fermi gas. Below a critical atom number, $N_{2D}$, only the lowest transverse vibrational state of a highly anisotropic oblate trapping potenti
We analytically determine the properties of three interacting fermions in a harmonic trap subject to an external rotation. Thermodynamic quantities such as the entropy and energy are calculated from the third order quantum virial expansion. By parame
We derive the phonon damping rate due to the four-phonon Landau-Khalatnikov process in low temperature strongly interacting Fermi gases using quantum hydrodynamics, correcting and extending the original calculation of Landau and Khalatnikov [ZhETF, 1
The virial expansion characterizes the high-temperature approach to the quantum-classical crossover in any quantum many-body system. Here, we calculate the virial coefficients up to the fifth-order of Fermi gases in 1D, 2D, and 3D, with attractive co