ﻻ يوجد ملخص باللغة العربية
We derive the phonon damping rate due to the four-phonon Landau-Khalatnikov process in low temperature strongly interacting Fermi gases using quantum hydrodynamics, correcting and extending the original calculation of Landau and Khalatnikov [ZhETF, 19 (1949) 637]. Our predictions can be tested in state-of-the-art experiments with cold atomic gases in the collisionless regime.
The experimental realization of stable, ultracold Fermi gases near a Feshbach resonance allows to study gases with attractive interactions of essentially arbitrary strength. They extend the classic paradigm of BCS into a regime which has never been a
We analytically determine the properties of three interacting fermions in a harmonic trap subject to an external rotation. Thermodynamic quantities such as the entropy and energy are calculated from the third order quantum virial expansion. By parame
We present an experimental investigation of collective oscillations in harmonically trapped Fermi gases through the crossover from two to three dimensions. Specifically, we measure the frequency of the radial monopole or breathing mode as a function
We analytically determine the properties of two interacting particles in a harmonic trap subject to a rotation or a uniform synthetic magnetic field, where the spherical symmetry of the relative Hamiltonian is preserved. Thermodynamic quantities such
We prepare and study strongly interacting two-dimensional Bose gases in the superfluid, the classical Berezinskii-Kosterlitz-Thouless (BKT) transition, and the vacuum-to-superfluid quantum critical regimes. A wide range of the two-body interaction st