ترغب بنشر مسار تعليمي؟ اضغط هنا

Universality and itinerant ferromagnetism in rotating strongly interacting Fermi gases

221   0   0.0 ( 0 )
 نشر من قبل Andrew McCallum Martin
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analytically determine the properties of three interacting fermions in a harmonic trap subject to an external rotation. Thermodynamic quantities such as the entropy and energy are calculated from the third order quantum virial expansion. By parameterizing the solutions in the rotating frame we find that the energy and entropy are universal for all rotations in the strongly interacting regime. Additionally, we find that rotation suppresses the onset of itinerant ferromagnetism in strongly interacting repulsive three-body systems.



قيم البحث

اقرأ أيضاً

We analytically determine the properties of two interacting particles in a harmonic trap subject to a rotation or a uniform synthetic magnetic field, where the spherical symmetry of the relative Hamiltonian is preserved. Thermodynamic quantities such as the entropy and energy are calculated via the second order quantum cluster expansion. We find that in the strongly interacting regime the energy is universal, however the entropy changes as a function of the rotation or synthetic magnetic field strength.
120 - W. Zwerger 2016
The experimental realization of stable, ultracold Fermi gases near a Feshbach resonance allows to study gases with attractive interactions of essentially arbitrary strength. They extend the classic paradigm of BCS into a regime which has never been a ccessible before. We review the theoretical concepts which have been developed in this context, including the Tan relations and the notion of fixed points at zero density, which are at the origin of universality. We discuss in detail the universal thermodynamics of the unitary Fermi gas which allows a fit free comparison between theory and experiment for this strongly interacting system. In addition, we adress the consequences of scale invariance at infinite scattering length and the subtle violation of scale invariance in two dimensions. Finally we discuss the Fermionic excitation spectrum accessible in momentum resolved RF-spectroscopy and the origin of universal lower bounds for the shear viscosity and the spin diffusion constant.
We study a one-dimensional two-component atomic Fermi gas with an infinite intercomponent contact repulsion. It is found that adding an attractive resonant odd-wave interaction breaking the rotational symmetry one can make the ground state ferromagne tic. A promising system for the observation of this itinerant ferromagnetic state is a 1D gas of $^{40}$K atoms, where 3D $s$-wave and $p$-wave Feshbach resonances are very close to each other and the 1D confinement significantly reduces the inelastic decay.
In this review, we discuss the properties of a few impurity atoms immersed in a gas of ultracold fermions, the so-called Fermi polaron problem. On one side, this many-body system is appealing because it can be described almost exactly with simple dia grammatic and/or variational theoretical approaches. On the other, it provides quantitatively reliable insight into the phase diagram of strongly interacting population imbalanced quantum mixtures. In particular, we show that the polaron problem can be applied to study itinerant ferromagnetism, a long standing problem in quantum mechanics.
We derive the phonon damping rate due to the four-phonon Landau-Khalatnikov process in low temperature strongly interacting Fermi gases using quantum hydrodynamics, correcting and extending the original calculation of Landau and Khalatnikov [ZhETF, 1 9 (1949) 637]. Our predictions can be tested in state-of-the-art experiments with cold atomic gases in the collisionless regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا