ﻻ يوجد ملخص باللغة العربية
We have studied the transition from two to three dimensions in a low temperature weakly interacting $^6$Li Fermi gas. Below a critical atom number, $N_{2D}$, only the lowest transverse vibrational state of a highly anisotropic oblate trapping potential is occupied and the gas is two-dimensional. Above $N_{2D}$ the Fermi gas enters the quasi-2D regime where shell structure associated with the filling of individual transverse oscillator states is apparent. This dimensional crossover is demonstrated through measurements of the cloud size and aspect ratio versus atom number.
We present an experimental investigation of collective oscillations in harmonically trapped Fermi gases through the crossover from two to three dimensions. Specifically, we measure the frequency of the radial monopole or breathing mode as a function
We theoretically investigate a polarized dipolar Fermi gas in free expansion. The inter-particle dipolar interaction deforms phase-space distribution in trap and also in the expansion. We exactly predict the minimal quadrupole deformation in the expa
Ultracold Fermi gases subject to tight transverse confinement offer a highly controllable setting to study the two-dimensional (2D) BCS to Berezinskii-Kosterlitz-Thouless superfluid crossover. Achieving the 2D regime requires confining particles to t
We model the one-dimension (1D) to three-dimension (3D) crossover in a cylindrically trapped Fermi gas with attractive interactions and spin-imbalance. We calculate the mean-field phase diagram, and study the relative stability of exotic superfluid p
Using a multiple-image reconstruction method applied to a harmonically trapped Bose gas, we determine the equation of state of uniform matter across the critical transition point, within the local density approximation. Our experimental results provi