ترغب بنشر مسار تعليمي؟ اضغط هنا

Sublattice Coding Algorithm and Distributed Memory Parallelization for Large-Scale Exact Diagonalizations of Quantum Many-Body Systems

35   0   0.0 ( 0 )
 نشر من قبل Alexander Wietek Ph.D.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present algorithmic improvements for fast and memory-efficient use of discrete spatial symmetries in Exact Diagonalization computations of quantum many-body systems. These techniques allow us to work flexibly in the reduced basis of symmetry-adapted wave functions. Moreover, a parallelization scheme for the Hamiltonian-vector multiplication in the Lanczos procedure for distributed memory machines avoiding load balancing problems is proposed. We demonstrate that using these methods low-energy properties of systems of up to 50 spin-1/2 particles can be successfully determined.



قيم البحث

اقرأ أيضاً

363 - Thomas Vojta 2018
Impurities, defects, and other types of imperfections are ubiquitous in realistic quantum many-body systems and essentially unavoidable in solid state materials. Often, such random disorder is viewed purely negatively as it is believed to prevent int eresting new quantum states of matter from forming and to smear out sharp features associated with the phase transitions between them. However, disorder is also responsible for a variety of interesting novel phenomena that do not have clean counterparts. These include Anderson localization of single particle wave functions, many-body localization in isolated many-body systems, exotic quantum critical points, and glassy ground state phases. This brief review focuses on two separate but related subtopics in this field. First, we review under what conditions different types of randomness affect the stability of symmetry-broken low-temperature phases in quantum many-body systems and the stability of the corresponding phase transitions. Second, we discuss the fate of quantum phase transitions that are destabilized by disorder as well as the unconventional quantum Griffiths phases that emerge in their vicinity.
A gapped many-body system is described by path integral on a space-time lattice $C^{d+1}$, which gives rise to a partition function $Z(C^{d+1})$ if $partial C^{d+1} =emptyset$, and gives rise to a vector $|Psirangle$ on the boundary of space-time if $partial C^{d+1} eqemptyset$. We show that $V = text{log} sqrt{langlePsi|Psirangle}$ satisfies the inclusion-exclusion property $frac{V(Acup B)+V(Acap B)}{V(A)+V(B)}=1$ and behaves like a volume of the space-time lattice $C^{d+1}$ in large lattice limit (i.e. thermodynamics limit). This leads to a proposal that the vector $|Psirangle$ is the quantum-volume of the space-time lattice $C^{d+1}$. The inclusion-exclusion property does not apply to quantum-volume since it is a vector. But quantum-volume satisfies a quantum additive property. The violation of the inclusion-exclusion property by $V = text{log} sqrt{langlePsi|Psirangle}$ in the subleading term of thermodynamics limit gives rise to topological invariants that characterize the topological order in the system. This is a systematic way to construct and compute topological invariants from a generic path integral. For example, we show how to use non-universal partition functions $Z(C^{2+1})$ on several related space-time lattices $C^{2+1}$ to extract $(M_f)_{11}$ and $text{Tr}(M_f)$, where $M_f$ is a representation of the modular group $SL(2,mathbb{Z})$ -- a topological invariant that almost fully characterizes the 2+1D topological orders.
Ab initio methods aim to solve the nuclear many-body problem with controlled approximations. Virtually exact numerical solutions for realistic interactions can only be obtained for certain special cases such as few-nucleon systems. Here we extend the reach of exact diagonalization methods to handle model spaces with dimension exceeding $10^{10}$ on a single compute node. This allows us to perform no-core shell model (NCSM) calculations for 6Li in model spaces up to $N_mathrm{max} = 22$ and to reveal the 4He+d halo structure of this nucleus. Still, the use of a finite harmonic-oscillator basis implies truncations in both infrared (IR) and ultraviolet (UV) length scales. These truncations impose finite-size corrections on observables computed in this basis. We perform IR extrapolations of energies and radii computed in the NCSM and with the coupled-cluster method at several fixed UV cutoffs. It is shown that this strategy enables information gain also from data that is not fully UV converged. IR extrapolations improve the accuracy of relevant bound-state observables for a range of UV cutoffs, thus making them profitable tools. We relate the momentum scale that governs the exponential IR convergence to the threshold energy for the first open decay channel. Using large-scale NCSM calculations we numerically verify this small-momentum scale of finite nuclei.
The computation of determinants plays a central role in diagrammatic Monte Carlo algorithms for strongly correlated systems. The evaluation of large numbers of determinants can often be the limiting computational factor determining the number of atta inable diagrammatic expansion orders. In this work we build upon the algorithm presented in [emph{Linear Algebra and its applications} 419.1 (2006), 107-124] which computes all principal minors of a matrix in $O(2^n)$ operations. We present multiple generalizations of the algorithm to the efficient evaluation of certain subsets of all principal minors with immediate applications to Connected Determinant Diagrammatic Monte Carlo within the normal and symmetry-broken phases as well as Continuous-time Quantum Monte Carlo. Additionally, we improve the asymptotic scaling of diagrammatic Monte Carlo formulated in real-time to $O(2^n)$ and report speedups of up to a factor $25$ at computationally realistic expansion orders. We further show that all permanent-principal-minors, corresponding to sums of bosonic Feynman diagrams, can be computed in $O(3^n)$, making diagrammatic Monte Carlo for bosonic and mixed systems a viable path worth exploring.
Quantum coherence quantifies the amount of superposition a quantum state can have in a given basis. Since there is a difference in the structure of eigenstates of the ergodic and many-body localized systems, we expect them also to differ in terms of their coherences in a given basis. Here, we numerically calculate different measures of quantum coherence in the excited eigenstates of an interacting disordered Hamiltonian as a function of the disorder. We show that quantum coherence can be used as an order parameter to detect the well-studied ergodic to many-body-localized phase transition. We also perform quantum quench studies to distinguish the behavior of coherence in thermalized and localized phases. We then present a protocol to calculate measurement-based localizable coherence to investigate the thermal and many-body localized phases. The protocol allows one to investigate quantum correlations experimentally in a non-destructive way, in contrast to measures that require tracing out a subsystem, which always destroys coherence and correlation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا