ﻻ يوجد ملخص باللغة العربية
Ab initio methods aim to solve the nuclear many-body problem with controlled approximations. Virtually exact numerical solutions for realistic interactions can only be obtained for certain special cases such as few-nucleon systems. Here we extend the reach of exact diagonalization methods to handle model spaces with dimension exceeding $10^{10}$ on a single compute node. This allows us to perform no-core shell model (NCSM) calculations for 6Li in model spaces up to $N_mathrm{max} = 22$ and to reveal the 4He+d halo structure of this nucleus. Still, the use of a finite harmonic-oscillator basis implies truncations in both infrared (IR) and ultraviolet (UV) length scales. These truncations impose finite-size corrections on observables computed in this basis. We perform IR extrapolations of energies and radii computed in the NCSM and with the coupled-cluster method at several fixed UV cutoffs. It is shown that this strategy enables information gain also from data that is not fully UV converged. IR extrapolations improve the accuracy of relevant bound-state observables for a range of UV cutoffs, thus making them profitable tools. We relate the momentum scale that governs the exponential IR convergence to the threshold energy for the first open decay channel. Using large-scale NCSM calculations we numerically verify this small-momentum scale of finite nuclei.
We present algorithmic improvements for fast and memory-efficient use of discrete spatial symmetries in Exact Diagonalization computations of quantum many-body systems. These techniques allow us to work flexibly in the reduced basis of symmetry-adapt
The halo nuclei $^6$He and $^8$He are described in a consistent way in a microscopic multiconfiguration model, the refined resonating group method. The ground state properties have been calculated, and momentum distributions of fragments and neutrons
Given the ground state wavefunction for an interacting lattice model, we define a correlation density matrix(CDM) for two disjoint, separated clusters $A$ and $B$, to be the density matrix of their union, minus the direct product of their respective
We introduce an exact numerical technique to solve the nuclear pairing Hamiltonian and to determine properties such as the even-odd mass differences or spectral functions for any element within the periodic table for any number of nuclear shells. In
We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, d