ترغب بنشر مسار تعليمي؟ اضغط هنا

Notes on Category Theory with examples from basic mathematics

69   0   0.0 ( 0 )
 نشر من قبل Paolo Perrone
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Paolo Perrone




اسأل ChatGPT حول البحث

These notes were originally developed as lecture notes for a category theory course. They should be well-suited to anyone that wants to learn category theory from scratch and has a scientific mind. There is no need to know advanced mathematics, nor any of the disciplines where category theory is traditionally applied, such as algebraic geometry or theoretical computer science. The only knowledge that is assumed from the reader is linear algebra. All concepts are explained by giving concrete examples from different, non-specialized areas of mathematics (such as basic group theory, graph theory, and probability). Not every example is helpful for every reader, but hopefully every reader can find at least one helpful example per concept. The reader is encouraged to read all the examples, this way they may even learn something new about a different field. Particular emphasis is given to the Yoneda lemma and its significance, with both intuitive explanations, detailed proofs, and specific examples. Another common theme in these notes is the relationship between categories and directed multigraphs, which is treated in detail. From the applied point of view, this shows why categorical thinking can help whenever some process is taking place on a graph. From the pure math point of view, this can be seen as the 1-dimensional first step into the theory of simplicial sets. Finally, monads and comonads are treated on an equal footing, differently to most literature in which comonads are often overlooked as just the dual to monads. Theorems, interpretations and concrete examples are given for monads as well as for comonads.



قيم البحث

اقرأ أيضاً

103 - Jean Gallier 2008
These are notes on discrete mathematics for computer scientists. The presentation is somewhat unconventional. Indeed I begin with a discussion of the basic rules of mathematical reasoning and of the notion of proof formalized in a natural deduction s ystem ``a la Prawitz. The rest of the material is more or less traditional but I emphasize partial functions more than usual (after all, programs may not terminate for all input) and I provide a fairly complete account of the basic concepts of graph theory.
73 - Tomas Crhak 2018
In The factorization of the Giry monad (arXiv:1707.00488v2) the author asserts that the category of convex spaces is equivalent to the category of Eilenberg-Moore algebras over the Giry monad. Some of the statements employed in the proof of this clai m have been refuted in our earlier paper (arXiv:1803.07956). Building on the results of that paper we prove that no such equivalence exists and a parallel statement is proved for the category of super convex spaces.
69 - Nima Rasekh 2021
Univalence was first defined in the setting of homotopy type theory by Voevodsky, who also (along with Kapulkin and Lumsdaine) adapted it to a model categorical setting, which was subsequently generalized to locally Cartesian closed presentable $inft y$-categories by Gepner and Kock. These definitions were used to characterize various $infty$-categories as models of type theories. We give a definition for univalent morphisms in finitely complete $infty$-categories that generalizes the aforementioned definitions and completely focuses on the $infty$-categorical aspects, characterizing it via representability of certain functors, which should remind the reader of concepts such as adjunctions or limits. We then prove that in a locally Cartesian closed $infty$-category (that is not necessarily presentable) univalence of a morphism is equivalent to the completeness of a certain Segal object we construct out of the morphism, characterizing univalence via internal $infty$-categories, which had been considered in a strict setting by Stenzel. We use these results to study the connection between univalence and elementary topos theory. We also study univalent morphisms in the category of groups, the $infty$-category of $infty$-categories, and pointed $infty$-categories.
120 - J. Fuchs , C. Schweigert 2001
We study properties of the category of modules of an algebra object A in a tensor category C. We show that the module category inherits various structures from C, provided that A is a Frobenius algebra with certain additional properties. As a by-prod uct we obtain results about the Frobenius-Schur indicator in sovereign tensor categories. A braiding on C is not needed, nor is semisimplicity. We apply our results to the description of boundary conditions in two-dimensional conformal field theory and present illustrative examples. We show that when the module category is tensor, then it gives rise to a NIM-rep of the fusion rules, and discuss a possible relation with the representation theory of vertex operator algebras.
Every ring extension of $A$ by $R$ induces a pair of group homomorphisms $mathcal{L}^{*}:Rto End_Z(A)/L(A);mathcal{R}^{*}:Rto End_Z(A)/R(A),$ preserving multiplication, satisfying some certain conditions. A such 4-tuple $(R,A,mathcal{L}^{*},mathcal{R }^{*})$ is called a ring pre-extension. Each ring pre-extension induces a $R$-bimodule structure on bicenter $K_A$ of ring $A,$ and induces an obstruction $k,$ which is a 3-cocycle of $Z$-algebra $R,$ with coefficients in $R$-bimodule $K_A$ in the sense of Shukla. Each obstruction $k$ in this sense induces a structure of a regular Ann-category of type $(R,K_A).$ This result gives us the first application of Ann-category in extension problems of algebraic structures, as well as in cohomology theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا