ﻻ يوجد ملخص باللغة العربية
We make some beginning observations about the category $mathbb{E}mathrm{q}$ of equivalence relations on the set of natural numbers, where a morphism between two equivalence relations $R,S$ is a mapping from the set of $R$-equivalence classes to that of $S$-equivalence classes, which is induced by a computable function. We also consider some full subcategories of $mathbb{E}mathrm{q}$, such as the category $mathbb{E}mathrm{q}(Sigma^0_1)$ of computably enumerable equivalence relations (called ceers), the category $mathbb{E}mathrm{q}(Pi^0_1)$ of co-computably enumerable equivalence relations, and the category $mathbb{E}mathrm{q}(mathrm{Dark}^*)$ whose objects are the so-called dark ceers plus the ceers with finitely many equivalence classes. Although in all these categories the monomorphisms coincide with the injective morphisms, we show that in $mathbb{E}mathrm{q}(Sigma^0_1)$ the epimorphisms coincide with the onto morphisms, but in $mathbb{E}mathrm{q}(Pi^0_1)$ there are epimorphisms that are not onto. Moreover, $mathbb{E}mathrm{q}$, $mathbb{E}mathrm{q}(Sigma^0_1)$, and $mathbb{E}mathrm{q}(mathrm{Dark}^*)$ are closed under finite products, binary coproducts, and coequalizers, but we give an example of two morphisms in $mathbb{E}mathrm{q}(Pi^0_1)$ whose coequalizer in $mathbb{E}mathrm{q}$ is not an object of $mathbb{E}mathrm{q}(Pi^0_1)$.
We show that doubly degenerate Penon tricategories give symmetric rather than braided monoidal categories. We prove that Penon tricategories cannot give all tricategories, but we show that a slightly modified version of the definition rectifies the s
For a category $mathbb{C}$, a small category $mathbb{I}$, and a pre-cover relation $sqsubset$ on $mathbb C$ we prove, under certain completeness assumptions on $mathbb C$, that a morphism $g: Bto C$ in the functor category $mathbb {C}^{mathbb I}$ adm
In this paper, we use a categorical and functorial set up to model the syntax and inference of logics of algebraic signature, extending previous works on algebraisation of logics. The main feature of this work is that structurality, or invariance und
In The factorization of the Giry monad (arXiv:1707.00488v2) the author asserts that the category of convex spaces is equivalent to the category of Eilenberg-Moore algebras over the Giry monad. Some of the statements employed in the proof of this clai
We generalise the construction of the Lie algebroid of a Lie groupoid so that it can be carried out in any tangent category. First we reconstruct the bijection between left invariant vector fields and source constant tangent vectors based at an ident