ﻻ يوجد ملخص باللغة العربية
We provide axioms that guarantee a category is equivalent to that of continuous linear functions between Hilbert spaces. The axioms are purely categorical and do not presuppose any analytical structure. This addresses a question about the mathematical foundations of quantum theory raised in reconstruction programmes such as those of von Neumann, Mackey, Jauch, Piron, Abramsky, and Coecke.
The category of Hilbert spaces and contractions has filtered colimits, and tensoring preserves them. We also discuss (problems with) bounded maps.
In The factorization of the Giry monad (arXiv:1707.00488v2) the author asserts that the category of convex spaces is equivalent to the category of Eilenberg-Moore algebras over the Giry monad. Some of the statements employed in the proof of this clai
We present a solution for the F-symbols of the H3 fusion category, which is Morita equivalent to the even parts of the Haagerup subfactor. This solution has been computed by solving the pentagon equations and using several properties of trivalent categories.
We study properties of the category of modules of an algebra object A in a tensor category C. We show that the module category inherits various structures from C, provided that A is a Frobenius algebra with certain additional properties. As a by-prod
We show that the comma category $(mathcal{F}downarrowmathbf{Grp})$ of groups under the free group functor $mathcal{F}: mathbf{Set} to mathbf{Grp}$ contains the category $mathbf{Gph}$ of simple graphs as a full coreflective subcategory. More broadly,