ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational constraints on the sub-galactic matter-power spectrum from galaxy-galaxy strong gravitational lensing

89   0   0.0 ( 0 )
 نشر من قبل Dorota Bayer
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Bayer




اسأل ChatGPT حول البحث

Constraining the sub-galactic matter-power spectrum on 1-10 kpc scales would make it possible to distinguish between the concordance $Lambda$CDM model and various alternative dark-matter models due to the significantly different levels of predicted mass structure. Here, we demonstrate a novel approach to observationally constrain the population of overall law-mass density fluctuations in the inner regions of massive elliptical lens galaxies, based on the power spectrum of the associated surface-brightness perturbations observable in highly magnified galaxy-scale Einstein rings and gravitational arcs. The application of our method to the SLACS lens system SDSS J0252+0039 results in the following limits (at the 99 per cent confidence level) on the dimensionless convergence-power spectrum (and the associated standard deviation in aperture mass): $Delta^{2}_{deltakappa}<1$ ($sigma_{AM}< 0.8 times 10^8 M_odot$) on 0.5-kpc scale, $Delta^{2}_{deltakappa}<0.1$ ($sigma_{AM}< 1 times 10^8 M_odot$) on 1-kpc scale and $Delta^{2}_{deltakappa}<0.01$ ($sigma_{AM}< 3 times 10^8 M_odot$) on 3-kpc scale. The estimated effect of CDM sub-haloes lies considerably below these first observational upper-limit constraints on the level of inhomogeneities in the projected total mass distribution of galactic haloes. Future analysis for a larger sample of galaxy-galaxy strong lens systems will narrow down these constraints and rule out all cosmological models predicting a significantly larger level of clumpiness on these critical sub-galactic scales.



قيم البحث

اقرأ أيضاً

A defining prediction of the cold dark matter (CDM) cosmological model is the existence of a very large population of low-mass haloes. This population is absent in models in which the dark matter particle is warm (WDM). These alternatives can, in pri nciple, be distinguished observationally because halos along the line-of-sight can perturb galaxy-galaxy strong gravitational lenses. Furthermore, the WDM particle mass could be deduced because the cut-off in their halo mass function depends on the mass of the particle. We systematically explore the detectability of low-mass haloes in WDM models by simulating and fitting mock lensed images. Contrary to previous studies, we find that halos are harder to detect when they are either behind or in front of the lens. Furthermore, we find that the perturbing effect of haloes increases with their concentration: detectable haloes are systematically high-concentration haloes, and accounting for the scatter in the mass-concentration relation boosts the expected number of detections by as much as an order of magnitude. Haloes have lower concentration for lower particle masses and this further suppresses the number of detectable haloes beyond the reduction arising from the lower halo abundances alone. Taking these effects into account can make lensing constraints on the value of the mass function cut-off at least an order of magnitude more stringent than previously appreciated.
We study the shapes of galaxy dark matter haloes by measuring the anisotropy of the weak gravitational lensing signal around galaxies in the second Red-sequence Cluster Survey (RCS2). We determine the average shear anisotropy within the virial radius for three lens samples: all galaxies with 19<m_r<21.5, and the `red and `blue samples, whose lensing signals are dominated by massive low-redshift early-type and late-type galaxies, respectively. To study the environmental dependence of the lensing signal, we separate each lens sample into an isolated and clustered part and analyse them separately. We also measure the azimuthal dependence of the distribution of physically associated galaxies around the lens samples. We find that these satellites preferentially reside near the major axis of the lenses, and constrain the angle between the major axis of the lens and the average location of the satellites to <theta>=43.7 deg +/- 0.3 deg for the `all lenses, <theta>=41.7 deg +/- 0.5 deg for the `red lenses and <theta>=42.0 deg +/- 1.4 deg for the `blue lenses. For the `all sample, we find that the anisotropy of the galaxy-mass cross-correlation function <f-f_45>=0.23 +/- 0.12, providing weak support for the view that the average galaxy is embedded in, and preferentially aligned with, a triaxial dark matter halo. Assuming an elliptical Navarro-Frenk-White (NFW) profile, we find that the ratio of the dark matter halo ellipticity and the galaxy ellipticity f_h=e_h/e_g=1.50+1.03-1.01, which for a mean lens ellipticity of 0.25 corresponds to a projected halo ellipticity of e_h=0.38+0.26-0.25 if the halo and the lens are perfectly aligned. For isolated galaxies of the `all sample, the average shear anisotropy increases to <f-f_45>=0.51+0.26-0.25 and f_h=4.73+2.17-2.05, whilst for clustered galaxies the signal is consistent with zero. (abridged)
170 - M. Jauzac 2017
We assess how much unused strong lensing information is available in the deep emph{Hubble Space Telescope} imaging and VLT/MUSE spectroscopy of the emph{Frontier Field} clusters. As a pilot study, we analyse galaxy cluster MACS,J0416.1-2403 ($z$$=$$0 .397$, $M(R<200,{rm kpc})$$=$$1.6$$times$$10^{14}msun$), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the clusters large-scale mass distribution. We find tentative evidence that some galaxies dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and baryonic halos are allowed, the model improves by 35%. This technique may provide a new way to investigate the processes and timescales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five emph{Frontier Field} clusters.
We use galaxy-galaxy lensing to study the dark matter halos surrounding a sample of Locally Brightest Galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central ga laxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their halos, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, $10.3 < log [M_*/M_odot] < 11.6$, we find that passive central galaxies have halos that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds $3sigma$ for $log [M_*/M_odot] > 10.7$. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type-dependence.
We derive constraints on primordial power spectrum, for the first time, from galaxy UV luminosity functions (LFs) at high redshifts. Since the galaxy LFs reflect an underlying halo mass function which depends on primordial fluctuations, one can const rain primordial power spectrum, particularly on small scales. We perform a Markov Chain Monte Carlo analysis by varying parameters for primordial power spectrum as well as those describing astrophysics. We adopt the UV LFs derived from Hubble Frontier Fields data at $z = 6 -10$, which enable us to probe primordial fluctuations on the scales of $k sim 10 - 10^3~{rm Mpc}^{-1}$. Our analysis also clarifies how the assumption on cosmology such as primordial power spectrum affects the determination of astrophysical parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا