ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

177   0   0.0 ( 0 )
 نشر من قبل Rachel Mandelbaum
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use galaxy-galaxy lensing to study the dark matter halos surrounding a sample of Locally Brightest Galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their halos, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, $10.3 < log [M_*/M_odot] < 11.6$, we find that passive central galaxies have halos that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds $3sigma$ for $log [M_*/M_odot] > 10.7$. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type-dependence.

قيم البحث

اقرأ أيضاً

Using photometric galaxies from the HSC survey, we measure the stellar mass density profiles for satellite galaxies as a function of the projected distance, $r_p$, to isolated central galaxies (ICGs) selected from SDSS/DR7 spectroscopic galaxies at $ zsim0.1$. By stacking HSC images, we also measure the projected stellar mass density profiles for ICGs and their stellar halos. The total mass distributions are further measured from HSC weak lensing signals. ICGs dominate within $sim$0.15 times the halo virial radius ($0.15R_{200}$). The stellar mass versus total mass fractions drop with the increase in $r_p$ up to $sim0.15R_{200}$, beyond which they are less than 1% while stay almost constant, indicating the radial distribution of satellites trace dark matter. The total stellar mass in satellites is proportional to the virial mass of the host halo, $M_{200}$, for ICGs more massive than $10^{10.5}M_odot$, i.e., $M_{ast,mathrm{sat}} propto M_{200}$, whereas the relation between the stellar mass of ICGs $+$ stellar halos and $M_{200}$ is close to $M_{ast,mathrm{ICG+diffuse}}propto M_{200}^{1/2}$. Below $10^{10.5}M_odot$, the change in $M_{200}$ is much slower with the decrease in $M_{ast,mathrm{ICG+diffuse}}$. At fixed stellar mass, red ICGs are hosted by more massive dark matter halos and have more satellites. At $M_{200}sim10^{12.7}M_odot$, both $M_{ast,mathrm{sat}}$ and the fraction of stellar mass in satellites versus total stellar mass, $f_mathrm{sat}$, tend to be slightly higher around blue ICGs, perhaps implying the late formation of blue galaxies. $f_mathrm{sat}$ increases with the increase in both $M_{ast,mathrm{ICG+diffuse}}$ and $M_{200}$, and scales more linearly with $M_{200}$. We provide best-fitting formulas for these scaling relations and for red and blue ICGs separately.
We investigate how strong gravitational lensing can test contemporary models of massive elliptical (ME) galaxy formation, by combining a traditional decomposition of their visible stellar distribution with a lensing analysis of their mass distributio n. As a proof of concept, we study a sample of three ME lenses, observing that all are composed of two distinct baryonic structures, a `red central bulge surrounded by an extended envelope of stellar material. Whilst these two components look photometrically similar, their distinct lensing effects permit a clean decomposition of their mass structure. This allows us to infer two key pieces of information about each lens galaxy: (i) the stellar mass distribution (without invoking stellar populations models) and (ii) the inner dark matter halo mass. We argue that these two measurements are crucial to testing models of ME formation, as the stellar mass profile provides a diagnostic of baryonic accretion and feedback whilst the dark matter mass places each galaxy in the context of LCDM large scale structure formation. We also detect large rotational offsets between the two stellar components and a lopsidedness in their outer mass distributions, which hold further information on the evolution of each ME. Finally, we discuss how this approach can be extended to galaxies of all Hubble types and what implication our results have for studies of strong gravitational lensing.
88 - D. Bayer 2018
Constraining the sub-galactic matter-power spectrum on 1-10 kpc scales would make it possible to distinguish between the concordance $Lambda$CDM model and various alternative dark-matter models due to the significantly different levels of predicted m ass structure. Here, we demonstrate a novel approach to observationally constrain the population of overall law-mass density fluctuations in the inner regions of massive elliptical lens galaxies, based on the power spectrum of the associated surface-brightness perturbations observable in highly magnified galaxy-scale Einstein rings and gravitational arcs. The application of our method to the SLACS lens system SDSS J0252+0039 results in the following limits (at the 99 per cent confidence level) on the dimensionless convergence-power spectrum (and the associated standard deviation in aperture mass): $Delta^{2}_{deltakappa}<1$ ($sigma_{AM}< 0.8 times 10^8 M_odot$) on 0.5-kpc scale, $Delta^{2}_{deltakappa}<0.1$ ($sigma_{AM}< 1 times 10^8 M_odot$) on 1-kpc scale and $Delta^{2}_{deltakappa}<0.01$ ($sigma_{AM}< 3 times 10^8 M_odot$) on 3-kpc scale. The estimated effect of CDM sub-haloes lies considerably below these first observational upper-limit constraints on the level of inhomogeneities in the projected total mass distribution of galactic haloes. Future analysis for a larger sample of galaxy-galaxy strong lens systems will narrow down these constraints and rule out all cosmological models predicting a significantly larger level of clumpiness on these critical sub-galactic scales.
We present an axially symmetric formula to calculate the probability of finding gravitational arcs in galaxy clusters, being induced by their massive dark matter haloes, as a function of clusters redshifts and virial masses. The formula includes the ellipticity of the clusters dark matter potential by using a pseudo-elliptical approximation. The probabilities are calculated and compared for two dark-matter halo profiles, the Navarro, Frenk and White (NFW) and the Non-Singular-Isothermal-Sphere (NSIS). We demonstrate the power of our formulation through a Kolmogorov-Smirnov (KS) test on the strong lensing statistics of an X-ray bright sample of low redshift Abell clusters. This KS test allows to establish limits on the values of the concentration parameter for the NFW profile ($c_Delta$) and the core radius for the NSIS profile (rc), which are related to the lowest cluster redshift ($z_{rm cut}$) where strong arcs can be observed. For NFW dark matter profiles, we infer cluster haloes with concentrations that are consistent to those predicted by $Lambda$CDM simulations. As for NSIS dark matter profiles, we find only upper limits for the clusters core radii and thus do not rule out a purely SIS model. For alternative mass profiles, our formulation provides constraints through $z_{rm cut}$ on the parameters that control the concentration of mass in the inner region of the clusters haloes. We find that $z_{rm cut}$ is expected to lie in the 0.0--0.2 redshift, highlighting the need to include very low-$z$ clusters in samples to study the clusters mass profiles.
A defining prediction of the cold dark matter (CDM) cosmological model is the existence of a very large population of low-mass haloes. This population is absent in models in which the dark matter particle is warm (WDM). These alternatives can, in pri nciple, be distinguished observationally because halos along the line-of-sight can perturb galaxy-galaxy strong gravitational lenses. Furthermore, the WDM particle mass could be deduced because the cut-off in their halo mass function depends on the mass of the particle. We systematically explore the detectability of low-mass haloes in WDM models by simulating and fitting mock lensed images. Contrary to previous studies, we find that halos are harder to detect when they are either behind or in front of the lens. Furthermore, we find that the perturbing effect of haloes increases with their concentration: detectable haloes are systematically high-concentration haloes, and accounting for the scatter in the mass-concentration relation boosts the expected number of detections by as much as an order of magnitude. Haloes have lower concentration for lower particle masses and this further suppresses the number of detectable haloes beyond the reduction arising from the lower halo abundances alone. Taking these effects into account can make lensing constraints on the value of the mass function cut-off at least an order of magnitude more stringent than previously appreciated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا