ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on the shapes of galaxy dark matter haloes from weak gravitational lensing

144   0   0.0 ( 0 )
 نشر من قبل Edo Van Uitert
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the shapes of galaxy dark matter haloes by measuring the anisotropy of the weak gravitational lensing signal around galaxies in the second Red-sequence Cluster Survey (RCS2). We determine the average shear anisotropy within the virial radius for three lens samples: all galaxies with 19<m_r<21.5, and the `red and `blue samples, whose lensing signals are dominated by massive low-redshift early-type and late-type galaxies, respectively. To study the environmental dependence of the lensing signal, we separate each lens sample into an isolated and clustered part and analyse them separately. We also measure the azimuthal dependence of the distribution of physically associated galaxies around the lens samples. We find that these satellites preferentially reside near the major axis of the lenses, and constrain the angle between the major axis of the lens and the average location of the satellites to <theta>=43.7 deg +/- 0.3 deg for the `all lenses, <theta>=41.7 deg +/- 0.5 deg for the `red lenses and <theta>=42.0 deg +/- 1.4 deg for the `blue lenses. For the `all sample, we find that the anisotropy of the galaxy-mass cross-correlation function <f-f_45>=0.23 +/- 0.12, providing weak support for the view that the average galaxy is embedded in, and preferentially aligned with, a triaxial dark matter halo. Assuming an elliptical Navarro-Frenk-White (NFW) profile, we find that the ratio of the dark matter halo ellipticity and the galaxy ellipticity f_h=e_h/e_g=1.50+1.03-1.01, which for a mean lens ellipticity of 0.25 corresponds to a projected halo ellipticity of e_h=0.38+0.26-0.25 if the halo and the lens are perfectly aligned. For isolated galaxies of the `all sample, the average shear anisotropy increases to <f-f_45>=0.51+0.26-0.25 and f_h=4.73+2.17-2.05, whilst for clustered galaxies the signal is consistent with zero. (abridged)



قيم البحث

اقرأ أيضاً

Cosmological simulations predict that galaxies are embedded into triaxial dark matter haloes, which appear approximately elliptical in projection. Weak gravitational lensing allows us to constrain these halo shapes and thereby test the nature of dark matter. Weak lensing has already provided robust detections of the signature of halo flattening at the mass scales of groups and clusters, whereas results for galaxies have been somewhat inconclusive. Here we combine data from five surveys (NGVSLenS, KiDS/KV450, CFHTLenS, CS82, and RCSLenS) in order to tighten observational constraints on galaxy-scale halo ellipticity for photometrically selected lens samples. We constrain $f_rm{h}$, the average ratio between the aligned component of the halo ellipticity and the ellipticity of the light distribution, finding $f_rm{h}=0.303^{+0.080}_{-0.079}$ for red lenses and $f_rm{h}=0.217^{+0.160}_{-0.159}$ for blue lenses when assuming elliptical NFW density profiles and a linear scaling between halo ellipticity and galaxy ellipticity. Our constraints for red galaxies constitute the currently most significant ($3.8sigma$) systematics-corrected detection of the signature of halo flattening at the mass scale of galaxies. Our results are in good agreement with expectations from the Millennium Simulation that apply the same analysis scheme and incorporate models for galaxy-halo misalignment. Assuming these misalignment models and the analysis assumptions stated above are correct, our measurements imply an average dark matter halo ellipticity for the studied red galaxy samples of $langle|epsilon_rm{h}|rangle=0.174pm 0.046$, where $|epsilon_{h}|=(1-q)/(1+q)$ relates to the ratio $q=b/a$ of the minor and major axes of the projected mass distribution. Similar measurements based on larger upcoming weak lensing data sets can help to calibrate models for intrinsic galaxy alignments. [abridged]
We present a study of the relation between dark matter halo mass and the baryonic content of host galaxies, quantified via luminosity and stellar mass. Our investigation uses 154 deg2 of Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) lensin g and photometric data, obtained from the CFHT Legacy Survey. We employ a galaxy-galaxy lensing halo model which allows us to constrain the halo mass and the satellite fraction. Our analysis is limited to lenses at redshifts between 0.2 and 0.4. We express the relationship between halo mass and baryonic observable as a power law. For the luminosity-halo mass relation we find a slope of 1.32+/-0.06 and a normalisation of 1.19+0.06-0.07x10^13 h70^-1 Msun for red galaxies, while for blue galaxies the best-fit slope is 1.09+0.20-0.13 and the normalisation is 0.18+0.04-0.05x10^13 h70^-1 Msun. Similarly, we find a best-fit slope of 1.36+0.06-0.07 and a normalisation of 1.43+0.11-0.08x10^13 h70^-1 Msun for the stellar mass-halo mass relation of red galaxies, while for blue galaxies the corresponding values are 0.98+0.08-0.07 and 0.84+0.20-0.16x10^13 h70^-1 Msun. For red lenses, the fraction which are satellites tends to decrease with luminosity and stellar mass, with the sample being nearly all satellites for a stellar mass of 2x10^9 h70^-2 Msun. The satellite fractions are generally close to zero for blue lenses, irrespective of luminosity or stellar mass. This, together with the shallower relation between halo mass and baryonic tracer, is a direct confirmation from galaxy-galaxy lensing that blue galaxies reside in less clustered environments than red galaxies. We also find that the halo model, while matching the lensing signal around red lenses well, is prone to over-predicting the large-scale signal for faint and less massive blue lenses. This could be a further indication that these galaxies tend to be more isolated than assumed. [abridged]
Current theories of structure formation predict specific density profiles of galaxy dark matter haloes, and with weak gravitational lensing we can probe these profiles on several scales. On small scales, higher-order shape distortions known as flexio n add significant detail to the weak lensing measurements. We present here the first detection of a galaxy-galaxy flexion signal in space-based data, obtained using a new Shapelets pipeline introduced here. We combine this higher-order lensing signal with shear to constrain the average density profile of the galaxy lenses in the Hubble Space Telescope COSMOS survey. We also show that light from nearby bright objects can significantly affect flexion measurements. After correcting for the influence of lens light, we show that the inclusion of flexion provides tighter constraints on density profiles than does shear alone. Finally we find an average density profile consistent with an isothermal sphere.
We revisit a cosmological constraint on dark matter decaying into dark radiation at late times. In Enqvist et al. (2015), we mainly focused on the effects of decaying dark matter (DDM) on the cosmic microwave background (CMB) and nonlinear matter pow er spectrum. Extending our previous analysis, here we use N-body simulation to investigate how DDM affects the halo mass function. This allows us to incorporate the cluster counts observed by the Sunyaev-Zeldovich effect to study a bound on the lifetime of DDM. We also update the data of CMB and cosmic shear power spectrum with the Planck 2015 results and KiDS450 observations, respectively. From these cosmological observations, we obtain an lower bound on the lifetime $Gamma^{-1}ge 175,$Gyr from the Planck2015 results (CMB+SZ cluster count) combined with the KiDS450 and the recent measurements of the baryon acoustic scale.
Convergence maps of the integrated matter distribution are a key science result from weak gravitational lensing surveys. To date, recovering convergence maps has been performed using a planar approximation of the celestial sphere. However, with the i ncreasing area of sky covered by dark energy experiments, such as Euclid, the Large Synoptic Survey Telescope (LSST), and the Wide Field Infrared Survey Telescope (WFIRST), this assumption will no longer be valid. We recover convergence fields on the celestial sphere using an extension of the Kaiser-Squires estimator to the spherical setting. Through simulations we study the error introduced by planar approximations. Moreover, we examine how best to recover convergence maps in the planar setting, considering a variety of different projections and defining the local rotations that are required when projecting spin fields such as cosmic shear. For the sky coverages typical of future surveys, errors introduced by projection effects can be of order tens of percent, exceeding 50% in some cases. The stereographic projection, which is conformal and so preserves local angles, is the most effective planar projection. In any case, these errors can be avoided entirely by recovering convergence fields directly on the celestial sphere. We apply the spherical Kaiser-Squires mass-mapping method presented to the public Dark Energy Survey (DES) science verification data to recover convergence maps directly on the celestial sphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا