ترغب بنشر مسار تعليمي؟ اضغط هنا

The shape of galaxy dark matter halos in massive galaxy clusters: Insights from strong gravitational lensing

171   0   0.0 ( 0 )
 نشر من قبل Mathilde Jauzac
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Jauzac




اسأل ChatGPT حول البحث

We assess how much unused strong lensing information is available in the deep emph{Hubble Space Telescope} imaging and VLT/MUSE spectroscopy of the emph{Frontier Field} clusters. As a pilot study, we analyse galaxy cluster MACS,J0416.1-2403 ($z$$=$$0.397$, $M(R<200,{rm kpc})$$=$$1.6$$times$$10^{14}msun$), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the clusters large-scale mass distribution. We find tentative evidence that some galaxies dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and baryonic halos are allowed, the model improves by 35%. This technique may provide a new way to investigate the processes and timescales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five emph{Frontier Field} clusters.



قيم البحث

اقرأ أيضاً

A defining prediction of the cold dark matter (CDM) cosmological model is the existence of a very large population of low-mass haloes. This population is absent in models in which the dark matter particle is warm (WDM). These alternatives can, in pri nciple, be distinguished observationally because halos along the line-of-sight can perturb galaxy-galaxy strong gravitational lenses. Furthermore, the WDM particle mass could be deduced because the cut-off in their halo mass function depends on the mass of the particle. We systematically explore the detectability of low-mass haloes in WDM models by simulating and fitting mock lensed images. Contrary to previous studies, we find that halos are harder to detect when they are either behind or in front of the lens. Furthermore, we find that the perturbing effect of haloes increases with their concentration: detectable haloes are systematically high-concentration haloes, and accounting for the scatter in the mass-concentration relation boosts the expected number of detections by as much as an order of magnitude. Haloes have lower concentration for lower particle masses and this further suppresses the number of detectable haloes beyond the reduction arising from the lower halo abundances alone. Taking these effects into account can make lensing constraints on the value of the mass function cut-off at least an order of magnitude more stringent than previously appreciated.
Cosmological cluster-scale strong gravitational lensing probes the mass distribution of the dense cores of massive dark matter halos and the structures along the line of sight from background sources to the observer. It is frequently assumed that the primary lens mass dominates the lensing, with the contribution of secondary masses along the line of sight being neglected. Secondary mass structures may, however, affect both the detectability of strong lensing in a given survey and modify the properties of the lensing that is detected. In this paper, we utilize a large cosmological N-body simulation and a multiple lens plane (and many source planes) ray-tracing technique to quantify the influence of line of sight halos on the detectability of cluster-scale strong lensing in a cluster sample with a mass limit that encompasses current cluster catalogs from the South Pole Telescope. We extract both primary and secondary halos from the Outer Rim simulation and consider two strong lensing realizations: one with only the primary halos included, and the other contains all secondary halos down to a mass limit. In both cases, we use the same source information extracted from the Hubble Ultra Deep Field, and create realistic lensed images consistent with moderately deep ground-based imaging. The results demonstrate that down to the mass limit considered the total number of lenses is boosted by about 13-21% when considering the complete multi-halo lightcone. The increment in strong lens counts peaks at lens redshifts of 0.6 approximately with no significant effect at z<0.3. The strongest trends are observed relative to the primary halo mass, with no significant impact in the most massive quintile of the halo sample, but increasingly boosting the observed lens counts toward small primary halo masses, with an enhancement greater than 50% in the least massive quintile of the halo masses considered.
Discovery of strongly-lensed gravitational wave (GW) sources will unveil binary compact objects at higher redshifts and lower intrinsic luminosities than is possible without lensing. Such systems will yield unprecedented constraints on the mass distr ibution in galaxy clusters, measurements of the polarization of GWs, tests of General Relativity, and constraints on the Hubble parameter. Excited by these prospects, and intrigued by the presence of so-called heavy black holes in the early detections by LIGO-Virgo, we commenced a search for strongly-lensed GWs and possible electromagnetic counterparts in the latter stages of the second LIGO observing run (O2). Here, we summarise our calculation of the detection rate of strongly-lensed GWs, describe our review of BBH detections from O1, outline our observing strategy in O2, summarize our follow-up observations of GW170814, and discuss the future prospects of detection.
Cosmological simulations indicate that cold dark matter (CDM) halos should be triaxial. Verifying observationally this theoretical prediction is, however, less than straightforward because the assembly of galaxies is expected to modify the halo shape s and to render them more axisymmetric. We use a suite of N-body simulations to investigate quantitatively the effect of the growth of a central disk galaxy on the shape of triaxial dark matter halos. As expected, the halo responds to the presence of the disk by becoming more spherical. The net effect depends only weakly on the orientation of the disk relative to the halo principal axes or the timescale of disk assembly, but strongly on the overall gravitational importance of the disk. Our results show that exponential disks whose contribution peaks at less than ~50% of their circular velocity are unable to modify noticeably the shape of the gravitational potential of their surrounding halos. Many dwarf and low surface brightness galaxies are expected to be in this regime, and therefore their detailed kinematics could be used to probe halo triaxiality, one of the basic predictions of the CDM paradigm. We argue that the complex disk kinematics of the dwarf galaxy NGC 2976 might be the reflection of a triaxial halo. Such signatures of halo triaxiality should be common in galaxies where the luminous component is subdominant.
Wave Dark Matter (WaveDM) has recently gained attention as a viable candidate to account for the dark matter content of the Universe. In this paper we explore the extent to which dark matter halos in this model, and under what conditions, are able to reproduce strong lensing systems. First, we analytically explore the lensing properties of the model -- finding that a pure WaveDM density profile, a soliton profile, produces a weaker lensing effect than other similar cored profiles. Then we analyze models with a soliton embedded in an NFW profile, as has been found in numerical simulations of structure formation. We use a benchmark model with a boson mass of $m_a=10^{-22}{rm eV}$, for which we see that there is a bi-modality in the contribution of the external NFW part of the profile, and actually some of the free parameters associated with it are not well constrained. We find that for configurations with boson masses $10^{-23}$ -- $10^{-22}{rm eV}$, a range of masses preferred by dwarf galaxy kinematics, the soliton profile alone can fit the data but its size is incompatible with the luminous extent of the lens galaxies. Likewise, boson masses of the order of $10^{-21}{rm eV}$, which would be consistent with Lyman-$alpha$ constraints and consist of more compact soliton configurations, necessarily require the NFW part in order to reproduce the observed Einstein radii. We then conclude that lens systems impose a conservative lower bound $m_a > 10^{-24}$ and that the NFW envelope around the soliton must be present to satisfy the observational requirements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا