ﻻ يوجد ملخص باللغة العربية
We propose capacitively driven low-swing global interconnect circuit using a receiver that utilizes magnetoelectric (ME) effect induced magnetization switching to reduce the energy consumption. Capacitively driven wire has recently been shown to be effective in improving the performance of global interconnects. Such techniques can reduce the signal swing in the interconnect by using a capacitive divider network and does not require an additional voltage supply. However, the large reduction in signal swing makes it necessary to use differential signaling and amplification for successful regeneration at the receiver, which add area and static power. ME effect induced magnetization reversal has recently been proposed which shows the possibility of using a low voltage to switch a nanomagnet adjacent to a multi-ferroic oxide. Here, we propose an ME effect based receiver that uses the low voltage at the receiving end of the global wire to switch a nanomagnet. The nanomagnet is also used as the free layer of a magnetic tunnel junction (MTJ), the resistance of which is tuned through the ME effect. This change in MTJ resistance is converted to full swing binary signals by using simple digital components. This process allows capacitive low swing interconnection without differential signaling or amplification, which leads to significant energy efficiency. Our simulation results indicate that for 5-10 mm long global wires in IBM 45 nm technology, capacitive ME design consumes 3x lower energy compared to full-swing CMOS design and 2x lower energy compared to differential amplifier based low-swing capacitive CMOS design.
Optical Network-on-Chip (ONoC) is an emerging technology considered as one of the key solutions for future generation on-chip interconnects. However, silicon photonic devices in ONoC are highly sensitive to temperature variation, which leads to a low
Emulating various facets of computing principles of the brain can potentially lead to the development of neuro-computers that are able to exhibit brain-like cognitive capabilities. In this letter, we propose a magnetoelectronic neuron that utilizes n
While molecular communication via diffusion experiences significant inter-symbol interference (ISI), recent work suggests that ISI can be mitigated via time differentiation pre-processing which achieves pulse narrowing. Herein, the approach is genera
We propose a new design for a cellular neural network with spintronic neurons and CMOS-based synapses. Harnessing the magnetoelectric and inverse Rashba-Edelstein effects allows natural emulation of the behavior of an ideal cellular network. This com
In this work, we propose helicity-dependent switching (HDS) of magnetization of Co/Pt for energy efficient optical receiver. Designing a low power optical receiver for optical-to-electrical signal conversion has proven to be very challenging. Current