ﻻ يوجد ملخص باللغة العربية
Emulating various facets of computing principles of the brain can potentially lead to the development of neuro-computers that are able to exhibit brain-like cognitive capabilities. In this letter, we propose a magnetoelectronic neuron that utilizes noise as a computing resource and is able to encode information over time through the independent control of external voltage signals. We extensively characterize the device operation using simulations and demonstrate its suitability for neuromorphic computing platforms performing temporal information encoding.
The emerging brain-inspired computing paradigm known as hyperdimensional computing (HDC) has been proven to provide a lightweight learning framework for various cognitive tasks compared to the widely used deep learning-based approaches. Spatio-tempor
Unary representation is straightforward, error tolerant and requires simple logic while its latency is a concern. On the other hand, positional representation (like binary) is compact and requires less space, but it is sensitive to errors. A hybrid r
Spintronic nanodevices have ultrafast nonlinear dynamic and recurrence behaviors on a nanosecond scale that promises to enable spintronic reservoir computing (RC) system. Here two physical RC systems based on a single magnetic skyrmion memristor (MSM
We propose a new design for a cellular neural network with spintronic neurons and CMOS-based synapses. Harnessing the magnetoelectric and inverse Rashba-Edelstein effects allows natural emulation of the behavior of an ideal cellular network. This com
This work presents the design and analysis of a mixed-signal neuron (MS-N) for convolutional neural networks (CNN) and compares its performance with a digital neuron (Dig-N) in terms of operating frequency, power and noise. The circuit-level implemen