We propose a new design for a cellular neural network with spintronic neurons and CMOS-based synapses. Harnessing the magnetoelectric and inverse Rashba-Edelstein effects allows natural emulation of the behavior of an ideal cellular network. This combination of effects offers an increase in speed and efficiency over other spintronic neural networks. A rigorous performance analysis via simulation is provided.
The emergence of resistive non-volatile memories opens the way to highly energy-efficient computation near- or in-memory. However, this type of computation is not compatible with conventional ECC, and has to deal with device unreliability. Inspired b
y the architecture of animal brains, we present a manufactured differential hybrid CMOS/RRAM memory architecture suitable for neural network implementation that functions without formal ECC. We also show that using low-energy but error-prone programming conditions only slightly reduces network accuracy.
Neuromorphic computing takes inspiration from the brain to create energy efficient hardware for information processing, capable of highly sophisticated tasks. In this article, we make the case that building this new hardware necessitates reinventing
electronics. We show that research in physics and material science will be key to create artificial nano-neurons and synapses, to connect them together in huge numbers, to organize them in complex systems, and to compute with them efficiently. We describe how some researchers choose to take inspiration from artificial intelligence to move forward in this direction, whereas others prefer taking inspiration from neuroscience, and we highlight recent striking results obtained with these two approaches. Finally, we discuss the challenges and perspectives in neuromorphic physics, which include developing the algorithms and the hardware hand in hand, making significant advances with small toy systems, as well as building large scale networks.
Machine learning software applications are nowadays ubiquitous in many fields of science and society for their outstanding capability of solving computationally vast problems like the recognition of patterns and regularities in big datasets. One of t
he main goals of research is the realization of a physical neural network able to perform data processing in a much faster and energy-efficient way than the state-of-the-art technology. Here we show that lattices of exciton-polariton condensates accomplish neuromorphic computing using fast optical nonlinearities and with lower error rate than any previous hardware implementation. We demonstrate that our neural network significantly increases the recognition efficiency compared to the linear classification algorithms on one of the most widely used benchmarks, the MNIST problem, showing a concrete advantage from the integration of optical systems in reservoir computing architectures.
Neurons in the brain behave as non-linear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behavior to realize high density, low power neuromorphic computing will require huge numbers of n
anoscale non-linear oscillators. Indeed, a simple estimation indicates that, in order to fit a hundred million oscillators organized in a two-dimensional array inside a chip the size of a thumb, their lateral dimensions must be smaller than one micrometer. However, despite multiple theoretical proposals, there is no proof of concept today of neuromorphic computing with nano-oscillators. Indeed, nanoscale devices tend to be noisy and to lack the stability required to process data in a reliable way. Here, we show experimentally that a nanoscale spintronic oscillator can achieve spoken digit recognition with accuracies similar to state of the art neural networks. We pinpoint the regime of magnetization dynamics leading to highest performance. These results, combined with the exceptional ability of these spintronic oscillators to interact together, their long lifetime, and low energy consumption, open the path to fast, parallel, on-chip computation based on networks of oscillators.
Neuromorphic computing describes the use of VLSI systems to mimic neuro-biological architectures and is also looked at as a promising alternative to the traditional von Neumann architecture. Any new computing architecture would need a system that can
perform floating-point arithmetic. In this paper, we describe a neuromorphic system that performs IEEE 754-compliant floating-point multiplication. The complex process of multiplication is divided into smaller sub-tasks performed by components Exponent Adder, Bias Subtractor, Mantissa Multiplier and Sign OF/UF. We study the effect of the number of neurons per bit on accuracy and bit error rate, and estimate the optimal number of neurons needed for each component.