ﻻ يوجد ملخص باللغة العربية
While molecular communication via diffusion experiences significant inter-symbol interference (ISI), recent work suggests that ISI can be mitigated via time differentiation pre-processing which achieves pulse narrowing. Herein, the approach is generalized to higher order differentiation. The fundamental trade-off between ISI mitigation and noise amplification is characterized, showing the existence of an optimal derivative order that minimizes the bit error rate (BER). Theoretical analyses of the BER and a signal-to-interference-plus-noise ratio are provided, the derivative order optimization problem is posed and solved for threshold-based detectors. For more complex detectors which exploit a window memory, it is shown that derivative pre-processing can strongly reduce the size of the needed window. Extensive numerical results confirm the accuracy of theoretical derivations, the gains in performance via derivative pre-processing over other methods and the impact of the optimal derivative order. Derivative pre-processing offers a low complexity/high-performance method for reducing ISI at the expense of increased transmission power to reduce noise amplification.
Ultrasonic intra-body communication (IBC) is a promising enabling technology for future healthcare applications, due to low attenuation and medical safety of ultrasonic waves for the human body. A splitting receiver, referred to as the splitting-dete
Beamforming structures with fixed beam codebooks provide economical solutions for millimeter wave (mmWave) communications due to the low hardware cost. However, the training overhead to search for the optimal beamforming configuration is proportional
In this paper, we propose a physical layer security scheme that exploits a novel index modulation (IM) technique for coordinate interleaved orthogonal designs (CIOD). Utilizing the diversity gain of CIOD transmission, the proposed scheme, named CIOD-
This study considers the joint location and velocity estimation of UE and scatterers in a three-dimensional mmWave CRAN architecture. Several existing works have achieved satisfactory results with neural networks (NNs) for localization. However, the
Diffusive molecular communications (DiMC) have recently gained attention as a candidate for nano- to micro- and macro-scale communications due to its simplicity and energy efficiency. As signal propagation is solely enabled by Brownian motion mechani