ﻻ يوجد ملخص باللغة العربية
We evaluate the determinant of a matrix whose entries are elliptic hypergeometric terms and whose form is reminiscent of Sylvester matrices. A hypergeometric determinant evaluation of a matrix of this type has appeared in the context of approximation theory, in the work of Feng, Krattenthaler and Xu. Our determinant evaluation is an elliptic extension of their evaluation, which has two additional parameters (in addition to the base $q$ and nome $p$ found in elliptic hypergeometric terms). We also extend the evaluation to a formula transforming an elliptic determinant into a multiple of another elliptic determinant. This transformation has two further parameters. The proofs of the determinant evaluation and the transformation formula require an elliptic determinant lemma due to Warnaar, and the application of two $C_n$ elliptic formulas that extend Frenkel and Turaevs $_{10}V_9$ summation formula and $_{12}V_{11}$ transformation formula, results due to Warnaar, Rosengren, Rains, and Coskun and Gustafson.
We construct a family of second-order linear difference equations parametrized by the hypergeometric solution of the elliptic Painleve equation (or higher-order analogues), and admitting a large family of monodromy-preserving deformations. The soluti
To each nonzero sequence $s:= {s_{n}}_{n geq 0}$ of real numbers we associate the Hankel determinants $D_{n} = det mathcal{H}_{n}$ of the Hankel matrices $mathcal{H}_{n}:= (s_{i + j})_{i, j = 0}^{n}$, $n geq 0$, and the nonempty set $N_{s}:= {n geq 1
We establish discrete and continuous log-concavity results for a biparametric extension of the $q$-numbers and of the $q$-binomial coefficients. By using classical results for the Jacobi theta function we are able to lift some of our log-concavity re
We give elementary proofs of the univariate elliptic beta integral with bases $|q|, |p|<1$ and its multiparameter generalizations to integrals on the $A_n$ and $C_n$ root systems. We prove also some new unit circle multiple elliptic beta integrals, w
We give a brief account of the key properties of elliptic hypergeometric integrals -- a relatively recently discovered top class of transcendental special functions of hypergeometric type. In particular, we describe an elliptic generalization of Eule