ﻻ يوجد ملخص باللغة العربية
We give elementary proofs of the univariate elliptic beta integral with bases $|q|, |p|<1$ and its multiparameter generalizations to integrals on the $A_n$ and $C_n$ root systems. We prove also some new unit circle multiple elliptic beta integrals, which are well defined for $|q|=1$, and their $pto 0$ degenerations.
We give a brief account of the key properties of elliptic hypergeometric integrals -- a relatively recently discovered top class of transcendental special functions of hypergeometric type. In particular, we describe an elliptic generalization of Eule
This paper deals with generalized elliptic integrals and generalized modular functions. Several new inequalities are given for these and related functions.
When introduced in a 2018 article in the American Mathematical Monthly, the omega integral was shown to be an extension of the Riemann integral. Although results for continuous functions such as the Fundamental Theorem of Calculus follow immediately,
First some definite integrals of W. H. L. Russell, almost all with trigonometric function integrands, are derived, and many generalized. Then a list is given in Russell-style of generalizations of integral identities of Amdeberhan and Moll. We conclu
We define a general class of (multiple) integrals of hypergeometric type associated with the Jacobi theta functions. These integrals are related to theta hypergeometric series through the residue calculus. In the one variable case, we get theta funct