ترغب بنشر مسار تعليمي؟ اضغط هنا

Solvability of the Hankel determinant problem for real sequences

98   0   0.0 ( 0 )
 نشر من قبل Andrew Bakan G
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Andrew Bakan




اسأل ChatGPT حول البحث

To each nonzero sequence $s:= {s_{n}}_{n geq 0}$ of real numbers we associate the Hankel determinants $D_{n} = det mathcal{H}_{n}$ of the Hankel matrices $mathcal{H}_{n}:= (s_{i + j})_{i, j = 0}^{n}$, $n geq 0$, and the nonempty set $N_{s}:= {n geq 1 , | , D_{n-1} eq 0 }$. We also define the Hankel determinant polynomials $P_0:=1$, and $P_n$, $ngeq 1$ as the determinant of the Hankel matrix $mathcal H_n$ modified by replacing the last row by the monomials $1, x, ldots, x^n$. Clearly $P_n$ is a polynomial of degree at most $n$ and of degree $n$ if and only if $nin N_s $. Kronecker established in 1881 that if $N_s $ is finite then rank $mathcal{H}_{n} = r$ for each $n geq r-1$, where $r := max N_s $. By using an approach suggested by I.S.Iohvidov in 1969 we give a short proof of this result and a transparent proof of the conditions on a real sequence ${t_n}_{ngeq 0}$ to be of the form $t_n=D_n$, $ngeq 0$ for a real sequence ${s_n}_{ngeq 0}$. This is the Hankel determinant problem. We derive from the Kronecker identities that each Hankel determinant polynomial $ P_n $ satisfying deg$P_n = ngeq 1$ is preceded by a nonzero polynomial $P_{n-1}$ whose degree can be strictly less than $n-1$ and which has no common zeros with $ P_n $. As an application of our results we obtain a new proof of a recent theorem by Berg and Szwarc about positive semidefiniteness of all Hankel matrices provided that $D_0 > 0, ldots, D_{r-1} > 0 $ and $D_n=0$ for all $ngeq r$.



قيم البحث

اقرأ أيضاً

106 - Jonathan Eckhardt 2016
We establish the unique solvability of a coupling problem for entire functions which arises in inverse spectral theory for singular second order ordinary differential equations/two-dimensional first order systems and is also of relevance for the integration of certain nonlinear wave equations.
179 - N. Magesh , J. Yamini 2015
In this sequel to the recent work (see Azizi et al., 2015), we investigate a subclass of analytic and bi-univalent functions in the open unit disk. We obtain bounds for initial coefficients, the Fekete-Szego inequality and the second Hankel determina nt inequality for functions belonging to this subclass. We also discuss some new and known special cases, which can be deduced from our results.
228 - H. Orhan , N. Magesh , J. Yamini 2015
In the present work, we propose to investigate the second Hankel determinant inequalities for certain class of analytic and bi-univalent functions. Some interesting applications of the results presented here are also discussed.
In this paper we prove that the Hankel multipliers of Laplace transform type on $(0,1)^n$ are of weak type (1,1). Also we analyze Lp-boundedness properties for the imaginary powers of Bessel operator on $(0,1)^n$.
123 - Renat Gontsov , Ilya Vyugin 2013
The paper concerns the solvability by quadratures of linear differential systems, which is one of the questions of differential Galois theory. We consider systems with regular singular points as well as those with (non-resonant) irregular ones and pr opose some criteria of solvability for systems whose (formal) exponents are sufficiently small.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا