ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrostatics of Two-Dimensional Lateral Junctions

221   0   0.0 ( 0 )
 نشر من قبل Ferney Alveiro Chaves Romero Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The increasing technological control of two-dimensional materials has allowed the demonstration of 2D lateral junctions, which display unique properties that might serve as the basis for a new generation of 2D electronic and optoelectronic devices. Notably, the chemically doped MoS$_2$ homojunction, the WSe$_2$-MoS$_2$ monolayer and MoS$_2$ monolayer/multilayer heterojunctions, have been demonstrated. Here we report the investigation of 2D lateral junction electrostatics, which differs from the bulk case because of the weaker screening, producing a much longer transition region between the space charge region and the quasi-neutral region, making inappropriate the use of the complete-depletion approximation. For such a purpose we have developed a method based on the conformal mapping technique to solve the 2D electrostatics, which is widely applicable to every kind of junctions, giving accurate results for even large asymmetric charge distribution scenarios.

قيم البحث

اقرأ أيضاً

We propose and investigate the intrinsically thinnest transistor concept: a monolayer ballistic heterojunction bipolar transistor based on a lateral heterostructure of transition metal dichalcogenides. The device is intrinsically thinner than a Field Effect Transistor because it does not need a top or bottom gate, since transport is controlled by the electrochemical potential of the base electrode. As typical of bipolar transistors, the collector current undergoes a tenfold increase for each 60 mV increase of the base voltage over several orders of magnitude at room temperature, without sophisticated optimization of the electrostatics. We present a detailed investigation based on self-consistent simulations of electrostatics and quantum transport for both electron and holes of a pnp device using MoS$_2$ for the 10-nm base and WSe$_2$ for emitter and collector. Our three-terminal device simulations confirm the working principle and a large current modulation I$_text{ON}$/I$_text{OFF}sim 10^8$ for $Delta V_{rm EB}=0.5$ V. Assuming ballistic transport, we are able to achieve a current gain $betasim$ 10$^4$ over several orders of magnitude of collector current and a cutoff frequency up to the THz range. Exploration of the rich world of bipolar nanoscale device concepts in 2D materials is promising for their potential applications in electronics and optoelectronics.
Low dimensional material systems provide a unique set of properties useful for solid-state devices. The building block of these devices is the PN junction. In this work, we present a dramatic difference in the electrostatics of PN junctions in lower dimensional systems, as against the well understood three dimensional systems. Reducing the dimensionality increases the depletion width significantly. We propose a novel method to derive analytic equations in 2D and 1D that considers the impact of neutral regions. The analytical results show an excellent match with both the experimental measurements and numerical simulations. The square root dependence of the depletion width on the ratio of dielectric constant and doping in 3D changes to a linear and exponential dependence for 2D and 1D respectively. This higher sensitivity of 1D PN junctions to its control parameters can be used towards new sensors.
Hybrid lateral superlattices composed of a square array of antidots and a periodic one-dimensional magnetic modulation are prepared in $mathrm{Ga[Al]As}$ heterostructures. The two-dimensional electron gases exposed to these superlattices are characte rized by magnetotransport experiments in vanishing average perpendicular magnetic fields. Despite the absence of closed orbits, the diagonal magnetoresistivity in the direction perpendicular to the magnetic modulation shows pronounced classical resonances. They are located at magnetic fields where snake trajectories exist which are quasi-commensurate with the antidot lattice. The diagonal magnetoresistivity in the direction of the magnetic modulation increases sharply above a threshold magnetic field and shows no fine structure. The experimental results are interpreted with the help of numerical simulations based on the semiclassical Kubo model.
We present a novel methodology to synthesize two-dimensional (2D) lateral heterostructures of graphene and MoS2 sheets with molecular carbon nanomembranes (CNMs), which is based on electron beam induced stitching. Monolayers of graphene and MoS2 were grown by chemical vapor deposition (CVD) on copper and SiO2 substrates, respectively, transferred onto gold/mica substrates and patterned by electron beam lithography or photolithography. Self-assembled monolayers (SAMs) of aromatic thiols were grown on the gold film in the areas where the 2D materials were not present. An irradiation with a low energy electron beam was employed to convert the SAMs into CNMs and simultaneously stitching the CNM edges to the edges of graphene and MoS2, therewith forming a heterogeneous but continuous film composed of two different materials. The formed lateral heterostructures possess a high mechanical stability, enabling their transfer from the gold substrate onto target substrates and even the preparation as freestanding sheets. We characterized the individual steps of this synthesis and the structure of the final heterostructures by complementary analytical techniques including optical microscopy, Raman spectroscopy, atomic force microscopy (AFM), helium ion microscopy (HIM), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM) and find that they possess nearly atomically sharp boundaries.
The interface between two different semiconductors is crucial in determining the electronic properties at the heterojunction, therefore novel techniques that can probe these regions are of particular interest. Recently it has been shown that heteroju nctions of two-dimensional transition metal dichalcogenides have sharp and epitaxial interfaces that can be used to the next generation of flexible and on chip optoelectronic devices. Here, we show that second harmonic generation (SHG) can be used as an optical tool to reveal these atomically sharp interfaces in different lateral heterostructures. We observed an enhancement of the SH intensity at the heterojunctions, and showed that is due to a coherent superposition of the SH emission from each material. This constructive interference pattern reveals a phase difference arising from the distinct second-order susceptibilities of both materials at the interface. Our results demonstrate that SHG microscopy is a sensitive characterization technique to unveil nanometric features in layered materials and their heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا