ﻻ يوجد ملخص باللغة العربية
The interface between two different semiconductors is crucial in determining the electronic properties at the heterojunction, therefore novel techniques that can probe these regions are of particular interest. Recently it has been shown that heterojunctions of two-dimensional transition metal dichalcogenides have sharp and epitaxial interfaces that can be used to the next generation of flexible and on chip optoelectronic devices. Here, we show that second harmonic generation (SHG) can be used as an optical tool to reveal these atomically sharp interfaces in different lateral heterostructures. We observed an enhancement of the SH intensity at the heterojunctions, and showed that is due to a coherent superposition of the SH emission from each material. This constructive interference pattern reveals a phase difference arising from the distinct second-order susceptibilities of both materials at the interface. Our results demonstrate that SHG microscopy is a sensitive characterization technique to unveil nanometric features in layered materials and their heterostructures.
We present a novel methodology to synthesize two-dimensional (2D) lateral heterostructures of graphene and MoS2 sheets with molecular carbon nanomembranes (CNMs), which is based on electron beam induced stitching. Monolayers of graphene and MoS2 were
The two-dimensional ferroelectrics GeS, GeSe, SnS and SnSe are expected to have large spontaneous in-plane electric polarization and enhanced shift-current response. Using density functional methods, we show that these materials also exhibit the larg
An optical Second-Harmonic Generation (SHG) allows to probe various structural and symmetry-related properties of materials, since it is sensitive to the inversion symmetry breaking in the system. Here, we investigate the SHG response from a single l
The second-order nonlinear optical susceptibility $Pi^{(2)}$ for second harmonic generation is calculated for gapped graphene. The linear and second-order nonlinear plasmon excitations are investigated in context of second harmonic generation (SHG).
Quantum geometry of the electron wave function plays a significant role in the linear and non-linear responses of crystalline materials. Here, we study quantum geometry induced second harmonic generation. We identify non-linear responses stemming fro