ترغب بنشر مسار تعليمي؟ اضغط هنا

Dramatic Impact of Dimensionality on the Electrostatics of PN Junctions

262   0   0.0 ( 0 )
 نشر من قبل Hesameddin Ilatikhameneh
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low dimensional material systems provide a unique set of properties useful for solid-state devices. The building block of these devices is the PN junction. In this work, we present a dramatic difference in the electrostatics of PN junctions in lower dimensional systems, as against the well understood three dimensional systems. Reducing the dimensionality increases the depletion width significantly. We propose a novel method to derive analytic equations in 2D and 1D that considers the impact of neutral regions. The analytical results show an excellent match with both the experimental measurements and numerical simulations. The square root dependence of the depletion width on the ratio of dielectric constant and doping in 3D changes to a linear and exponential dependence for 2D and 1D respectively. This higher sensitivity of 1D PN junctions to its control parameters can be used towards new sensors.

قيم البحث

اقرأ أيضاً

Low dimensional material systems provide a unique set of properties useful for solid-state devices. The building block of these devices is the PN junction. In this work, we present a dramatic difference in the electrostatics of PN junctions in lower dimensional systems, as against the well understood three dimensional systems. Reducing the dimensionality increases the fringing fields and depletion width significantly. We propose a novel method to derive analytic equations in 2D and 1D that considers the impact of neutral regions. The analytical results show an excellent match with both the experimental measurements and numerical simulations. The square root dependence of the depletion width on the ratio of dielectric constant and doping in 3D changes to a linear and exponential dependence for 2D and 1D respectively. This higher sensitivity of 1D PN junctions to its control parameters can be used towards new sensors.
The increasing technological control of two-dimensional materials has allowed the demonstration of 2D lateral junctions, which display unique properties that might serve as the basis for a new generation of 2D electronic and optoelectronic devices. N otably, the chemically doped MoS$_2$ homojunction, the WSe$_2$-MoS$_2$ monolayer and MoS$_2$ monolayer/multilayer heterojunctions, have been demonstrated. Here we report the investigation of 2D lateral junction electrostatics, which differs from the bulk case because of the weaker screening, producing a much longer transition region between the space charge region and the quasi-neutral region, making inappropriate the use of the complete-depletion approximation. For such a purpose we have developed a method based on the conformal mapping technique to solve the 2D electrostatics, which is widely applicable to every kind of junctions, giving accurate results for even large asymmetric charge distribution scenarios.
In this paper we present a comprehensive model for the tunneling current of the metal-insulator-graphene heterostructure, based on the Bardeen Transfer Hamiltonian method, of the metal-insulator-graphene heterostructure. As a particular case we have studied the metal-graphene junction, unveiling the role played by different electrical and physical parameters in determining the differential contact resistance.
Creation of sharp lateral p-n junctions in graphene devices, with transition widths well below the Fermi wavelength of graphene charge carriers, is vital to study and exploit these electronic systems for electron-optical applications. The achievement of such junctions is, however, not trivial due to the presence of a considerable out-of-plane electric field in lateral p-n junctions, resulting in large widths. Metal-graphene interfaces represent a novel, promising and easy to implement technique to engineer such sharp lateral p-n junctions in graphene field-effect devices, in clear contrast to the much wider (i.e. smooth) junctions achieved via conventional local gating. In this work, we present a systematic and robust investigation of the electrostatic problem of metal-induced lateral p-n junctions in gated graphene devices for electron-optics applications, systems where the width of the created junctions is not only determined by the metal used but also depends on external factors such as device geometries, dielectric environment and different operational parameters such as carrier density and temperature. Our calculations demonstrate that sharp junctions can be achieved via metal-graphene interfaces at room temperature in devices surrounded by dielectric media with low relative permittivity. In addition, we show how specific details such as the separation distance between metal and graphene and the permittivity of the gap in-between plays a critical role when defining the p-n junction, not only defining its width w but also the energy shift of graphene underneath the metal. These results can be extended to any two-dimensional (2D) electronic system doped by the presence of metal clusters and thus are relevant for understanding interfaces between metals and other 2D materials.
The unusual electrical and optical properties of graphene make it a promising candidate for optoelectronic applications. An important, but as yet unexplored aspect is the role of photo-excited hot carriers in charge and energy transport at graphene i nterfaces. Here, we perform time-resolved (~250 fs) scanning photocurrent microscopy on a tunable graphene pn junction. The ultrafast pump-probe measurements yield a photocurrent response time of ~1.5 ps at room temperature increasing to ~4 ps at 20 K. Combined with the negligible dependence of photocurrent amplitude on environmental temperature this implies that hot carriers rather than phonons dominate energy transport at high frequencies. Gate-dependent pump-probe measurements demonstrate that both thermoelectric and built-in electric field effects contribute to the photocurrent excited by laser pulses. The relative weight of each contribution depends on the junction configuration. A single laser beam excitation also displays multiple polarity-reversals as a function of carrier density, a signature of impact ionization. Our results enhance the understanding of non-equilibrium electron dynamics, electron-electron interactions, and electron-phonon interactions in graphene. They also determine fundamental limits on ultrafast device operation speeds (~500 GHz) for potential graphene-based photon detection, sensing, and communication.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا