ترغب بنشر مسار تعليمي؟ اضغط هنا

Accuracy of generalized gradient approximation functionals for density functional perturbation theory calculations

188   0   0.0 ( 0 )
 نشر من قبل Gian-Marco Rignanese
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We assess the validity of various exchange-correlation functionals for computing the structural, vibrational, dielectric, and thermodynamical properties of materials in the framework of density-functional perturbation theory (DFPT). We consider five generalized-gradient approximation (GGA) functionals (PBE, PBEsol, WC, AM05, and HTBS) as well as the local density approximation (LDA) functional. We investigate a wide variety of materials including a semiconductor (silicon), a metal (copper), and various insulators (SiO$_2$ $alpha$-quartz and stishovite, ZrSiO$_4$ zircon, and MgO periclase). For the structural properties, we find that PBEsol and WC are the closest to the experiments and AM05 performs only slightly worse. All three functionals actually improve over LDA and PBE in contrast with HTBS, which is shown to fail dramatically for $alpha$-quartz. For the vibrational and thermodynamical properties, LDA performs surprisingly very good. In the majority of the test cases, it outperforms PBE significantly and also the WC, PBEsol and AM05 functionals though by a smaller margin (and to the detriment of structural parameters). On the other hand, HTBS performs also poorly for vibrational quantities. For the dielectric properties, none of the functionals can be put forward. They all (i) fail to reproduce the electronic dielectric constant due to the well-known band gap problem and (ii) tend to overestimate the oscillator strengths (and hence the static dielectric constant).



قيم البحث

اقرأ أيضاً

Kinetic energy (KE) approximations are key elements in orbital-free density functional theory. To date, the use of non-local functionals, possibly employing system dependent parameters, has been considered mandatory in order to obtain satisfactory ac curacy for different solid-state systems, whereas semilocal approximations are generally regarded as unfit to this aim. Here, we show that instead properly constructed semilocal approximations, the Pauli-Gaussian (PG) KE functionals, especially at the Laplacian-level of theory, can indeed achieve similar accuracy as non-local functionals and can be accurate for both metals and semiconductors, without the need of system-dependent parameters.
We present the self-consistent implementation of current-dependent (hybrid) meta generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to imple ment mGGAs in the framework of Kohn--Sham current density-functional theory (KS-CDFT). A unique feature of the non-perturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 a.u. ($sim 235000$T) in strength. CDFT functionals based on the TPSS and B98 forms are investigated and their performance is assessed by comparison with accurate CCSD(T) data. In the weak field regime magnetic properties such as magnetizabilities and NMR shielding constants show modest but systematic improvements over GGA functionals. However, in strong field regime the mGGA based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity these forms are found to be numerically stable and their accuracy at high field suggests the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.
The development of semilocal models for the kinetic energy density (KED) is an important topic in density functional theory (DFT). This is especially true for subsystem DFT, where these models are necessary to construct the required non-additive embe dding contributions. In particular, these models can also be efficiently employed to replace the exact KED in meta-Generalized Gradient Approximation (meta-GGA) exchange-correlation functionals allowing to extend the subsystem DFT applicability to the meta-GGA level of theory. Here, we present a two-dimensional scan of semilocal KED models as linear functionals of the reduced gradient and of the reduced Laplacian, for atoms and weakly-bound molecular systems. We find that several models can perform well but in any case the Laplacian contribution is extremely important to model the local features of the KED. Indeed a simple model constructed as the sum of Thomas-Fermi KED and 1/6 of the Laplacian of the density yields the best accuracy for atoms and weakly-bound molecular systems. These KED models are tested within subsystem DFT with various meta-GGA exchange-correlation functionals for non-bonded systems, showing a good accuracy of the method.
A real-space formalism for density-functional perturbation theory (DFPT) is derived and applied for the computation of harmonic vibrational properties in molecules and solids. The practical implementation using numeric atom-centered orbitals as basis functions is demonstrated exemplarily for the all-electron Fritz Haber Institute ab initio molecular simulations (FHI-aims) package. The convergence of the calculations with respect to numerical parameters is carefully investigated and a systematic comparison with finite-difference approaches is performed both for finite (molecules) and extended (periodic) systems. Finally, the scaling tests and scalability tests on massively parallel computer systems demonstrate the computational efficiency.
We present a benchmark of the density functional linear response calculation of NMR shieldings within the Gauge-Including Projector-Augmented-Wave method against all-electron Augmented-Plane-Wave$+$local-orbital and uncontracted Gaussian basis set re sults for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا