ترغب بنشر مسار تعليمي؟ اضغط هنا

Semilocal density functional theory with correct surface asymptotics

249   0   0.0 ( 0 )
 نشر من قبل Eduardo Fabiano
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Semilocal density functional theory is the most used computational method for electronic structure calculations in theoretical solid-state physics and quantum chemistry of large systems, providing good accuracy with a very attractive computational cost. Nevertheless, because of the non-locality of the exchange-correlation hole outside a metal surface, it was always considered inappropriate to describe the correct surface asymptotics. Here, we derive, within the semilocal density functional theory formalism, an exact condition for the image-like surface asymptotics of both the exchange-correlation energy per particle and potential. We show that this condition can be easily incorporated into a practical computational tool, at the simple meta-generalized-gradient approximation level of theory. Using this tool, we also show that the Airy-gas model exhibits asymptotic properties that are closely related to the ones at metal surfaces. This result highlights the relevance of the linear effective potential model to the metal surface asymptotics.



قيم البحث

اقرأ أيضاً

We apply the coupled dynamics of time-dependent density functional theory and Maxwell equations to the interaction of intense laser pulses with crystalline silicon. As a function of electromagnetic field intensity, we see several regions in the respo nse. At the lowest intensities, the pulse is reflected and transmitted in accord with the dielectric response, and the characteristics of the energy deposition is consistent with two-photon absorption. The absorption process begins to deviate from that at laser intensities ~ 10^13 W/cm^2, where the energy deposited is of the order of 1 eV per atom. Changes in the reflectivity are seen as a function of intensity. When it passes a threshold of about 3 times 1012 W/cm2, there is a small decrease. At higher intensities, above 2 times 10^13 W/cm^2, the reflectivity increases strongly. This behavior can be understood qualitatively in a model treating the excited electron-hole pairs as a plasma.
In orbital-free density functional theory the kinetic potential (KP), the functional derivative of the kinetic energy density functional, appears in the Euler equation for the electron density and may be more amenable to simple approximations. We stu dy properties of two solid-state systems, Al and Si, using two nonlocal KPs that gave good results for atoms. Very accurate results are found for Al, but results for Si are much less satisfactory, illustrating the general need for a better treatment of extended covalent systems. A different integration pathway in the KP formalism may prove useful in attacking this fundamental problem.
Real-time time-dependent density functional theory (rt-TDDFT) with hybrid exchange-correlation functional has wide-ranging applications in chemistry and material science simulations. However, it can be thousands of times more expensive than a convent ional ground state DFT simulation, hence is limited to small systems. In this paper, we accelerate hybrid functional rt-TDDFT calculations using the parallel transport gauge formalism, and the GPU implementation on Summit. Our implementation can efficiently scale to 786 GPUs for a large system with 1536 silicon atoms, and the wall clock time is only 1.5 hours per femtosecond. This unprecedented speed enables the simulation of large systems with more than 1000 atoms using rt-TDDFT and hybrid functional.
Kinetic energy (KE) approximations are key elements in orbital-free density functional theory. To date, the use of non-local functionals, possibly employing system dependent parameters, has been considered mandatory in order to obtain satisfactory ac curacy for different solid-state systems, whereas semilocal approximations are generally regarded as unfit to this aim. Here, we show that instead properly constructed semilocal approximations, the Pauli-Gaussian (PG) KE functionals, especially at the Laplacian-level of theory, can indeed achieve similar accuracy as non-local functionals and can be accurate for both metals and semiconductors, without the need of system-dependent parameters.
Systems whose underlying classical dynamics are chaotic exhibit signatures of the chaos in their quantum mechanics. We investigate the possibility of using time-dependent density functional theory (TDDFT) to study the case when chaos is induced by el ectron-interaction alone. Nearest-neighbour level-spacing statistics are in principle exactly and directly accessible from TDDFT. We discuss how the TDDFT linear response procedure can reveal the mechanism of chaos induced by electron-interaction alone. A simple model of a two-electron quantum dot highlights the necessity to go beyond the adiabatic approximation in TDDFT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا